THE COMPUTER PROGRAM NETMAP

1. INTRODUCTION

The program NETmap makes computations for nearly Euclidean Thurston maps, NET maps
for short. These special Thurston maps were introduced in [1] and further investigated in [2],
3], [4], [5] and [7]. They are those Thurston maps f: S? — S? with exactly four postcritical
points such that the local degree of f at each of its critical points is 2.

NETmap is a command line program written in C. It begins with a plain text input file
prepared by the user. This input file contains information which describes a virtual NET
map presentation, defined in Section 6 of [3]. The word “virtual” indicates that such a
presentation does not quite describe a NET map. It describes a NET map up to a translation
term, which is an ordered pair of integers. Since the equivalence class of the map depends
only on the values of these integers modulo 2, there are essentially four choices for this
translation term. The program does not require the translation term because most of its
computations are independent of the translation term. Computations which require the
translation term are usually made four times, once for each translation term. So with each
run, the program makes computations for up to four closely related Thurston equivalence
classes of NET maps.

In addition to the input file, NETmap also asks for some input from the user at the keyboard.
It then writes output to a number of output files. All of this is carefully described in the
following two sections, one for input and one for output.

2. InPUT

During the keyboard input phase of the program, the program asks for information. Every
response concludes by pressing the enter key.

The input file. Most of the input is in a plain text file, which should be prepared in the for-
mat of the sample file sample.input. This file contains the data corresponding to the virtual
presentation diagram in Figure 2. The name of the file must have the form filename.input.
The program begins by asking for filename. This may be an absolute path name or a path
name relative to NETmap’s location. The program reads the data in filename.input. It
writes output to files in the same directory with names based on filename. We continue with
an explanation of the input.

The vectors A\; and \,. NETmap makes computations for a NET map expressed as f = hog,
where g: S? — 52 is a Euclidean NET map and h: S? — S? is a push homeomorphism taking
the posteritical set P, of g into g~*(P,). The map g is induced by an affine map ®: R? — R?
We assume that ®(x) = Az + b, where z is a column vector in R? and A is a 2 x 2 matrix
of integers with det(A) = deg(g) = deg(f) > 2. Let A; and Ay be the columns of A. Then
b is a integral linear combination of A\; and Ay. The vectors Ay and Ay form a basis of a
proper sublattice A; of the standard lattice Z?. Let I'; be the group of Euclidean isometries
of the form = + 2\ £ for some A € A;. Then the map ®: R> — R? induces the map

Date: March 22, 2019.

2 THE COMPUTER PROGRAM NETMAP

)\1 + /\2 2)\1 +)\2

yavs

2\ =

FIGURE 1. The fundamental domain F; with corners 0, 2A;, Ay and 2\; + Ay

ty S5 =15 f@
S4 ° S1 ° S¢
®
t 23 S2 s3 =13
FIGURE 2. The green line segments and the points s1,%q, ..., Sg, ts

g: R?/T; — R?*/T; in the straightforward way. This determines ¢ in terms of A;, Ay and b
(up to conjugation by a homeomorphism depending on the identification of R?/T'; with S?).
This map g is a Euclidean NET map. The program requires the coordinates of \; and As.

For example, the first line of the input file sample.input is “lambdal”. The next line has
the form “integer space integer”. Since the first integer is 2 and the second integer is 0, this
means that A\; = (2,0), using row notation now. Similarly, the next two lines of sample.input
mean that Ay = (2,2).

We discuss the translation term b in this paragraph. The program requires the vectors \;
and Ay. This determines the matrix A. Thus g is determined except for the translation term
b. The program does not require b. For one thing, most of the computations are independent
of b. For those computations which depend on b, we note that I'; contains all translations of
the form = — x + A\, where A € 2A;. This implies that changing b by adding an element of
2A; does not change f, and so we may assume that b € {0, A\;, Ay, \; + A2}. Computations
which depend on b are usually made four times, once for each of the values 0, A\;, Ay and
A1 + A2. The reason for the word “usually” is that there are atypical cases in degrees 2 and
4 for which the map f resulting from some choice(s) of b has fewer than four postcritical
points, and so is not a NET map.

The six lattice points paired with 0, A1, 21, Ao, A1 + Ao, 2A1 + Ao. The program requires
input data for h. For this we need a fundamental domain F} for I';. The program always
takes F} to be the closed parallelogram with corners 0, 2\{, Ay and 2\; + Ay. The rotation
of order 2 about \; identifies the closed line segments [0, A\;] and [A1,2\;]. The rotation of

THE COMPUTER PROGRAM NETMAP 3

order 2 about A; + Ay identifies the closed line segments [A2, A1 + A2] and [A; + Ao, 2X\1 + o).
The translation x — x + 2)\; identifies the closed line segments [0, Ao] and [2A1,2A; + Ao].
Identifying the points on the boundary of Fj using these boundary identifications obtains
our 2-sphere.

The map h is a push map. It is defined as follows. There are four disjoint arcs [y, [,
B3, Ba in S?, each with initial endpoint in the postcritical set P, of g and terminal endpoint
in the postcritical set Py of f. We choose four disjoint closed topological disks D, Ds,
.D37 D4 in]RQ/Fl with ﬁz g lHt(DZ) for 7 € {1,2,3,4} The map h: RZ/Fl — R2/F1 is a
homeomorphism such that h(x) = x for every ¢ Dy U Dy U D3U Dy and h maps the initial
endpoint of §; to its terminal endpoint for every i € {1,...,4}. Theorem 6.1 of [3] shows
that every NET map has such a presentation for which the inverse image of 51 U 8o U 53U By
in the fundamental domain F} is a union of line segments. NETmap assumes that the inverse
image of 8 U B U 3 U 4 in the fundamental domain Fj is a union of line segments. (Some
line segments might be trivial, consisting of just a point each.) We call these line segments
the green line segments. We color the nontrivial ones green.

So here is the information that NETmap needs for h. See Figures 1 and 2. Let ¢y, ..., ¢ be
the elements of F; N A; in the following order.

t1 =20 t2:>\1 t3:2>\1 t4:>\2 t5:>\1—|—>\2 t6:2)\1—|—/\2

Each of 1, ..., tg is contained in a green line segment, a connected component of the inverse
image in F; of 1 U By U B3 U By. Let s; be an endpoint of the green line segment which
contains ¢; for i € {1,...,6}. We choose s; so that s; # t; unless the green line segment
which contains ¢; is trivial, consisting of just a point. NETmap requires the points sy, ..., s¢.

We return to the file sample.input. One line contains “thelattice point_paired with.0”. The
line following this has the form “integer space integer”. The 3 and the 1 here mean that
s1 = (3, 1), which is correct because (3, 1) is the other endpoint of the green line segment with
endpoint t;. Similarly, s = (3,0) because (3,0) is one endpoint of the green line segment
which contains t,. Equivalently, we may take so = (1,0). We must take s3 = t3 = (4,0)
because the green line segment containing ts is trivial. We must take s, = (1,1) because
(1,1) is the other endpoint of the green line segment with one endpoint t4. We must take
s5 = t5 = (4,2). We must take ss = (5,1).

This is all of the information in the input file. So the information in the input file consists
of A1, Ay and the six lattice points sq, ..., Sg.

More keyboard input. A bit more keyboard input is usually needed. The program will
probably ask for a positive integer which bounds the absolute values of the numerators and
denominators of slopes to be considered. For simple computations, 25 is a good choice,
resulting in a quick and effective computation. The program also asks for the smallest and
largest x-coordinates to be used for the half-space postscript output file. These are floating
point numbers. It is difficult to guess appropriate bounds on z. In general, a reasonable
strategy is to run the program using the values —10 and 10, examine the file to refine these
bounds and run the program again. The bounds on numerators and denominators and the
bounds on z are made at the keyboard because making changes is quicker at the keyboard
than by file.

This completes the input phase of the program. The program has the information which
it needs to make computations.

4 THE COMPUTER PROGRAM NETMAP

3. OuTPUT

The program first performs several checks on the input to verify that it is valid. For
example, it checks that the images in the quotient space R?/T'; of the green line segments
are disjoint. If it finds an error in the input, then it aborts with an error message which
describes the difficulty. Most of these checks occur immediately after the user inputs the file
name. This is the main reason for the statement above that the program will “probably” ask
for a positive integer which bounds the absolute values of the numerators and denominators
of slopes to be considered.

Output is contained in the terminal, several postscript files and three text files. These text
files are filename_Main.output, filename MOD.output and filename_Table.output. Except for
error messages, which often appear only in the terminal, the content of the terminal output
is the same as filename_Main.output.

All conclusions reached by the program are based on integer computations. That is, no
conclusion involves a floating point computation. So roundoff error cannot affect any con-
clusion. However some output does appear in decimal form. This is simply because in these
cases the decimal form is generally more informative than giving the number in fraction
form. These decimal expressions are computed by converting a rational number to decimal
form solely for output.

To explain the output, we now fix some definitions and notation regarding slopes. We
begin with a NET map f: S* — S? with postcritical set P;. The input file provides a
presentation for f, except for omitting the translation term.

This presentation determines a way [1, Section 4] to assign slopes, elements of Q = Q U
{oo}, in a bijective manner to homotopy classes of simple closed curves in S? \ P; which
are neither inessential nor peripheral. The map f determines a pullback map on these
homotopy classes and therefore a slope function g y: Q — QU {®}. The symbol ®, called
the nonslope, corresponds to homotopy classes of simple closed curves which are either
inessential or peripheral. Let s € Q. Let v be a simple closed curve in 52\ Py with slope s.
If every connected component of f~!(v) is either inessential or peripheral, then p(s) = ©.
Otherwise, the connected components of f~!(v) which are neither inessential nor peripheral
have the same slope, j1¢(s). Let ¢(s) be the number of these connected components. Theorem
4.1 of [1] implies that f maps each of these connected components to v with the same degree
d(s). The fraction ¢(s)/d(s) is the Thurston multiplier of s.

The intersection number of two simple closed curves in 52\ Py is gotten by putting them
in general position and counting intersection points. If the curves have slopes § and %, then
this intersection number is 2 times the absolute value of the determinant of the matrix whose
columns are [9] and [;]. We call this determinant absolute value the intersection pairing of
the two slopes.

We continue with a subsection for each output file.

3.1 THE FILE FILENAME_MAIN.OUTPUT

Order of the postcritical set. NETmap always computes the order of the postcritical set
for every translation term b € {0, A1, A2, A1 + Ao}. There are some cases in degrees 2 and
4 for which the resulting Thurston map has fewer than four postcritical points and so is
not a NET map. If there are fewer than four postcritical points for every choice of b, then
the program aborts with an explanatory message, since the remaining computations are not
meaningful.

THE COMPUTER PROGRAM NETMAP 5

Primitivity. We say that f is imprimitive if there exist NET maps f; and f; both with
postcritical sets P such that f; is Euclidean and f = f; o fs. If there do not exist such maps
f1 and fs, then we say that f is primitive. NETmap next states whether or not f is primitive.

Degree of f. NETmap gives the degree of f.

Pure modular group Hurwitz classes for translations. NET maps f; and f; with
postcritical sets Py and Py, are Hurwitz equivalent for the modular group if there exist
orientation-preserving homeomorphisms o, 1: (S?, Py,) — (S?, Py,) such that o f; = fyo1).
If in addition ¢ Py = ¢’Pf2, then f; and f, are Hurwitz equivalent for the pure modular
group. The resulting equivalence classes are called modular group Hurwitz classes and pure
modular group Hurwitz classes, respectively. The NET maps which arise from the four
possible translation terms lie in the same modular group Hurwitz class, but not necessarily
the same pure modular group Hurwitz class. NETmap next gives a partition of {0, A1, Ao, A\; +
Ao} according to pure modular group Hurwitz equivalence.

Finiteness of the number of Thurston equivalence classes. NETmap next states whet-
her or not the pure modular group Hurwitz class of f contains infinitely many Thurston
equivalence classes. If there are only finitely many, then NETmap states whether or not the
modular group Hurwitz class of f contains infinitely many Thurston equivalence classes.

Number of pure modular group Hurwitz classes in the modular group Hurwitz
class. NETmap next gives the number of pure modular group Hurwitz classes in the modular
group Hurwitz class of f.

Multipliers. NETmap next lists all slope multipliers. These multipliers are expressed as
c¢(s)/d(s) without reducing the fraction, and so the numerator and denominator might not
be relatively prime.

Half-space computations. NETmap essentially always reports on the rationality of f. If
it verifies that f is Thurston equivalent to a rational map, then it says so with details. If
it verifies that f is not Thurston equivalent to a rational map, then it says so with details.
Otherwise it reports that its efforts are inconclusive with details.

The main tool used to verify that f is Thurston equivalent to a rational map is the half-
space theorem, Theorem 6.7 in [1]. The half-space computation produces the postscript file
filenameHalfSpace.ps and the text file filename_Table.output. The file filename_Main.output
contains a summary of these results. We describe the postscript file and the summary here.
The half-space table is described in Section 3.3.

The half-space theorem determines open half-spaces in the upper half-plane. It provides
one such half-space for every slope 2 such that py(2) # £ and py(2) # ©. This open
half-space contains no fixed point of the pullback map o;. Moreover, the open interval of
R U {oo} in the boundary of this half-space does not contain the negative reciprocal of the
slope of an obstruction for f. We call such intervals and connected unions of them excluded
intervals. The shaded region in filenameHalfSpace.ps is the union of those half-spaces which
arise from slopes 2 such that [p| and |g| are bounded by the bound input at the keyboard.
Increasing the numerator-denominator bound creates more half-spaces. This enlarges the
shaded region and the set of excluded points (possibly not strictly).

NETmap outputs in the summary the set of excluded points in R as a disjoint union of open
intervals. Although not graphically appealing like the postscript file, this list of intervals is

6 THE COMPUTER PROGRAM NETMAP

numerically much more precise. It also handles the entire real line, whereas the postscript
file necessarily handles only a finite interval.

The endpoints of the excluded intervals arising from the half-space theorem are in general
numbers in real quadratic number fields. They are not always rational. In order for NETmap
to reach its conclusions using only integer arithmetic, it shrinks these intervals slightly to
obtain intervals with rational endpoints. The endpoints of the subintervals are typically
within 107!% of the endpoints of the original intervals.

If the orbifold of f is hyperbolic, if every point in R is excluded and if oo is not an
obstruction, then f is unobstructed. In this case, NETmap announces in the summary that
the half-space theorem shows that f is Thurston equivalent to a rational map.

Now suppose that the half-space computation does not exclude every real number, and
that the determination of whether or not f is Thurston equivalent to a rational map has
not been made by some other means. In this case, NETmap performs the supplemental
half-space computation. The main tool in the supplemental half-space computation is the
extended half-space theorem, discussed in Section 8 of [2]. To state a qualitative version of
the extended half-space theorem, we first restate the part of the half-space theorem which
deals with obstructions. If s € Q, ps(s) # s and us(s) # ©, then the half-space theorem
determines an open interval containing —1/s such that no number in this open interval is
the negative reciprocal of a Thurston obstruction. On the other hand, if s € Q and either
pr(s) = s or py(s) = ®, then the extended half-space theorem determines an open interval
containing —1/s such that no extended rational number in this open interval other than
—1/s is the negative reciprocal of a Thurston obstruction.

In this paragraph we very briefly describe the supplemental half-space computation. The
half-space computation yields an open set of excluded real numbers. NETmap searches for
a rational number not in this set, trying to minimize absolute values of numerator and
denominator. (This is done without regard for the numerator-denominator bound input at
the keyboard. These numerators and denominators can be much larger than the numerator-
denominator bound input at the keyboard.) After it finds a suitable rational number ¢, it
checks whether or not ¢ is the negative reciprocal of an obstruction. If an obstruction has not
been found, then NETmap applies either the half-space theorem or the extended half-space
theorem to —1/¢, whichever is appropriate. This enlarges the excluded set of real numbers.
This procedure is then iterated.

In the summary NETmap lists every interval which it finds in this way together with ¢ and
whether this interval was obtained by applying the half-space theorem (HST') or the extended
half-space theorem (EXTENDED HST) to —1/t. Instead of either HST or EXTENDED
HST, the output might be EXTENDED HST — > HST. This means that during the extended
half-space computation for ¢, a half-space theorem excluded interval was found which contains
t. The supplemental half-space computation often concludes with a set of excluded real
numbers whose complement is a finite set of rational numbers. (A forthcoming paper will
show that if the orbifold of f is hyperbolic and there is no obstruction with multiplier 1,
then this always happens theoretically.) In this situation it is a straightforward matter to
determine whether or not f is obstructed. If NETmap fails to determine whether or not f is
obstructed, then it presents all of the excluded real numbers which it has found as a list of
disjoint open intervals.

Slope function dynamics. The slope function dynamics for Euclidean NET maps are
simple, and NETmap gives a quite complete description in this case. NETmap’s output of

THE COMPUTER PROGRAM NETMAP 7

slope function dynamics is never complete in the case of a hyperbolic orbifold. For hyper-
bolic orbifolds, NETmap proceeds very differently depending on whether f is obstructed or
unobstructed.

NETmap always searches for all slope function fixed points. It usually finds all of them, even
when there are infinitely many. It does this by a method analogous to how it determines
rationality using the half-space theorem and the extended half-space theorem. Analogous to
the half-space theorem, Corollary 8.3 of [7] provides intervals containing no slope function
fixed points. There is also an analog of the extended half-space theorem.

Suppose that the orbifold of f is hyperbolic and that f is unobstructed. In this case NETmap
searches for slope function cycles. The basic idea is to simply compute orbits of slopes under
the slope function and to record the cycles at the ends of these orbits. However, it does
something more efficient. Recall that the user inputs a positive integer B which bounds the
absolute values of numerators and denominators of slopes to consider. Let S be this set of
slopes. Let § € S. NETmap computes p f(g). Suppose that this is unequal to ® and equal to

Iqi:. If 21: € S and |p'| 4+ |¢'| < |p| + |g|, then NETmap terminates the computation for 150 and

proceeds to the next slope. The cycle for § will be found in the computation for f]i:. This

reduction from %’ to fli: is what usually happens. This phenomenon usually makes this cycle

computation rather fast. If the computation for ’5’ does not reduce to f]ij, then the program
proceeds in the straightforward manner to compute successive elements of the orbit of §.
Doing so, it might obtain slopes not in the set S. It will tolerate 29 consecutive slopes not
in S. However, upon reaching 30 consecutive slopes not in S, it quits computing the orbit
of §7 conceding failure. It then proceeds to the next slope. Another way that NETmap might
concede failure is to eventually obtain a slope whose numerator or denominator is at least
100,000 in absolute value.

Now suppose that the orbifold of f is hyperbolic and that f is obstructed. In this case
instead of working with the set of slopes whose numerators and denominators are bounded
by the bound B input by the user, NETmap attempts to work with the set S of slopes whose
intersection pairing with the obstruction slope is at most B. This is an infinite set of slopes.
NETmap is often able to reduce this infinite set to a finite set by utilizing the stabilizer of the
obstruction in the group of modular group liftables. When it is unable to do so, it reverts
to the algorithm used in the unobstructed case.

The slope function dynamics for obstructed NET maps can be much more complicated
than for unobstructed NET maps. NETmap’s computations and output in the former case are
accordingly also more complicated. For example, there could be infinitely many fixed points.
There could be an “infinite cycle”, an infinite set of slopes on which py acts as translation
by 1 acts on Z. There could be an infinite set of slopes on which p; acts as multiplication
by 2 acts on Z. More complicated behaviors occur. Slopes in such infinite sets are always
expressed as fractions (alN + b)/(cN + d). The N represents an arbitrary integer and is
always present. The a, b, ¢ and d are specific integers.

NETmap always describes the results of this slope function computation, including failures.
For example, if these orbits all end in either a fixed point or a nontrivial cycle or the nonslope,
then the program says so. The program lists the fixed points and nontrivial cycles which
it finds. Because these orbits need not remain in the set S, the slopes in the cycles listed
might not be in S either. Moreover, the search for all slope function fixed points might find
a fixed point not in S.

8 THE COMPUTER PROGRAM NETMAP

& &
A 4 @

FIGURE 3. Modifying F] in an exceptional case

The fixed points of the slope function are listed in a table with seven columns. The first
column contains the fixed point s. Column 2 contains ¢ = ¢(s). Column 3 contains d = d(s).
The remaining four columns deal with whether or not s is the slope of a mating equator.
Unlike most of these computations, this depends on the translation term b in the presentation
for f. So there is one remaining column for every choice of b among 0, A1, Ao, A\; + Ao. Below
the value of b is either “Yes” or “No”. “Yes” means that s is the slope of a mating equator
for the NET map defined with this value of b, and “No” means that s is not the slope of a
mating equator.

Because NETmap is unable to print the symbol ®, instead of saying that ps(s) = ®, it says
that pif(s) is the nonslope.

Miscellaneous results. If f is Euclidean, then NETmap reports this. If f is a flexible Lattes
map, then NETmap reports this. If every NET map in the pure modular group Hurwitz class
of f is rational, then NETmap reports this. If every NET map in the modular group Hurwitz
class of f is rational, then NETmap reports this. If jf(s) = ® for every slope s, equivalently,
oy is constant, then NETmap reports this. In the case of a constant pullback map, NETmap
usually gives the value of this constant. At the other extreme, if there is no slope s such
that p1(s) = ©, then NETmap reports this.

For each of these properties, if NETmap says nothing about the property, then the property
does not hold. For example, if NETmap does not say that every NET map in the pure modular
group Hurwitz class of f is rational, then some NET map in the pure modular group Hurwitz
class of f is not rational.

Wreath recursions. The last output to appear in filename_Main.output is a fundamental
group wreath recursion for every value of the translation term b which yields a NET map.
This information is given in terms of four generators a, b, ¢ and d of the fundamental group
of the complement of the postcritical set of f in S%. (Please excuse the double meaning of b.)
The rest of this discussion of wreath recursions is about the choices made when computing
this wreath recursion.

We work with the fundamental domain Fi, the green line segments and the points sq, ..., sg
described in the section on input. Let ¢: R? — R?/T'; be the canonical quotient map. Let
F| be the set of points in the interior of F} which are not contained in any of the green line
segments. We want F| to be connected, which is usually true. However, F; might be as in
the left portion of Figure 3. In this case we remedy this defect by modifying F] as indicated
in the right portion of Figure 3. This handles the case in which a green line segment joins
the top and bottom of F;. We modify F] in a similar manner if some green line segment
joins the sides of F}.

Thus F7 is connected, an open topological disk. This property is largely responsible for
the validity of the following discussion. We choose a point zy € F], and we take ¢(xq) to be
the basepoint for our fundamental group. We next define the group elements a, b, ¢, d.

THE COMPUTER PROGRAM NETMAP 9

Suppose that s3 is not in the interior of F;. We choose an arc o in FY from zj to a point
near s;. Then a is the homotopy class of a loop which traverses ¢(«), then a very small
simple closed curve around ¢(s;) in the counterclockwise direction and then the inverse of
(). For b, we choose an arc § in F] from zg to a point near so. Then b is the homotopy
class of a loop which traverses ¢(f3), then a very small simple closed curve around ¢(s3) in
the counterclockwise direction and then the inverse of ().

If s3 is in the interior of F}, then a goes from z(to a point near s, and goes from z(to
a point near s3. This defines a and b.

We define ¢ and d analogously, using arcs v and ¢ instead of o and . If s4 is not in the
interior of F, then v goes from xy to a point near s5 and § goes from x(to a point near s4.
If s6 is in the interior of Fi, then v goes from xy to a point near sg and d goes from z(to a
point near s;. This defines ¢ and d.

This completes the definition of a, b, ¢ and d. Our fundamental group has presentation
(a,b,c,d : abed = 1).

We next discuss the elements of f~1(¢(x9)) and how they are indexed. The preimages of
F} under the affine map ® are 2 x 1 rectangles with sides parallel to the coordinate axes.
If the translation term of ® is either 0 or Ay, then four of these rectangles meet at (0,0).
Otherwise, four of these rectangles meet at (1,0). The centers of exactly deg(f) of these
rectangles lie in either the interior of F} or in the “left half” of the boundary of Fj. (“Left”
means in the direction of —\;.) Being correct up to homotopy, we compute as though the
images under ¢ of these centers are the elements of f~!(¢(zg)). We order these deg(f)
centers starting with the lowest leftmost one. That is center number 1. The centers above it
have indices 2, 3,4, ... in order. The next center is the lowest leftmost of those which remain.
We iterate this procedure to index all of these centers. For each of these centers we choose
an arc from xz(to it so that the interior of this arc is in FY. If this center is in the interior of
Fi; and on one of the green line segments, then this arc is chosen so that if it were extended
to pass through the green line segment and return to xy within FY, then it would encircle a
segment of the green line segment in the counterclockwise direction.

These choices determine this wreath recursion.

3.2 THE FILE FILENAME_MOD.OUTPUT

Let G be either the pure modular group, the modular group or the extended modular
group, which allows for reversal of orientation. We say that an element ¢ of G is liftable
if it is represented by a homeomorphism ¢y for which there exists a homeomorphism @g
representing an element ¢ of G such that f oy = @y o f. The set of all such elements ¢ is
a subgroup of G. If G is the pure modular group, then the assignment ¢ +— @ defines the
pure modular group virtual endomorphism. For the other two groups, this assignment is a
multi-function and the result is a multi-endomorphism.

The file filename MOD.output contains information about the subgroups of liftable ele-
ments relative to the pure modular group, the modular group and the extended modular
group. Except for translations, all of this information is given in terms of the pullback
action of these groups on the upper half-plane. The meaning of most of this information is
hopefully clear. For the first two groups we have index (of the image) in PSL(2,Z), minimal
number of generators (of the image), number of equivalence classes of cusps, genus and re-
presentatives of the cusp equivalence classes. For the second group there is also information
about elliptic elements.

10 THE COMPUTER PROGRAM NETMAP

Next comes a list of cusps at the fundamental domain. These cusps are the extended
rational numbers which are on either side of an edge of the fundamental domain in filena-
meTreePMOD.ps, filenameTreeMOD.ps or filenameTreeEMOD.ps, except that if an edge is
fixed by a reflection, then the list contains only the extended rational number in the unshaded
region of filenameSigma.ps.

Here is what NETmap does with the cusps for PMOD and MOD. For each of these cusps, if
the pullback map o maps the cusp to a cusp, then this image is given. Otherwise NET map
gives the pseudoimages of this cusp. This calls for some explanation. Here, instead of dealing
with simple closed curves, we deal with core arcs of simple closed curves. A core arc is simply
an arc in S? joining distinct postcritical points whose interior avoids the postcritical points
of f. Every core arc has a slope. Let o and 3 be disjoint core arcs. Their four endpoints
are the four elements of Py, and they have the same slope s. The connected components of
the inverse image f~!(aU) of a U 3 consists of two arcs and some simple closed curves.
Suppose that 117(s) = ©. Then one of these connected components either contains at least
three elements of Py or it contains two elements of Py and separates the other two elements
of Ps. It is a union of core arcs. We call the slopes of these core arcs pseudoimages of s. The
pseudoimages given by NETmap are negative reciprocals of the pseudoimages of the slope s
corresponding to the cusp —1/s.

Here is what NETmap does with the cusps for EMOD. In this case NETmap tries to determine
the image of the cusp under the pullback map oy even if this image lies in the upper half-
plane. Of course, if the image is a cusp, then this is given. Sometimes NETmap can only
determine that the image lies in a geodesic, in which case it gives this geodesic. If the image
in the upper half-plane can be determined, then this image is given as the intersection of
two or (redundantly) three geodesics. The corresponding values of ¢ and d are also given.

Next comes a list of generators for the pullback action of the group on the upper half-plane.
Matrix(a, b, ¢, d) means [2Y]. These generating sets arise from the fundamental domains in
the files filenameTreePMOD.ps, filenameTreeMOD.ps and filenameTreeEMOD.ps. These
fundamental domains correspond to fundamental domains for the pullback actions of these
groups on the upper half-plane. The generators given pair edges of the latter fundamental
domains, and NETmap describes these edge pairings. So if (ry,re) — > (r3,74) appears in
the column with heading “EDGE PAIRING”, then this generator takes the geodesic with
endpoints r; and ry to the geodesic with endpoints r3 and ry.

Next comes another listing of the same generators together with their images under the
modular group virtual endomorphism.

NETmap next gives information on the image of the group of liftables under the modular
group virtual endomorphism.

For the modular and pure modular groups, o; induces a branched covering map from
the upper half-plane modulo the action of the group of liftables to the upper half-plane
modulo the image of this group under the virtual endomorphism. This induced map is a
finite branched cover from one finitely punctured compact Riemann surface to another. The
degree of this induced map is given next. For PMOD NETmap also gives the degrees of Sarah
Koch’s [6] maps X and Y.

The map Y is a Belyi map. Hence there is a dessin d’enfant associated to it. Unable to
draw the dessin, NETmap gives equivalent information, a permutation triple [8] for Y. This
is a triple of permutations (7my;my;m3) with mmoms = 1. The permutations 7y, m and 73
describe the monodromy of Y at 0, 1 and oo.

THE COMPUTER PROGRAM NETMAP 11

Here is an explicit construction of the dessin from this permutation triple. The dessin is a
bipartite graph embedded in an oriented closed surface whose genus is the genus of the pure
modular group liftables, mentioned above. Every edge of this graph has a white vertex and
a black vertex. The permutations act on the edges of this graph. The number of edges is the
degree of Y. Every cycle in 71, including trivial cycles, corresponds to a white vertex and
the cycle describes the edges which contain this vertex in positive cyclic order. In the same
way, the permutation 7y describes the black vertices and the edges which contain them. This
determines the dessin.

NETmap gives DeckMod(f), the subgroup of the modular group represented by homeomor-
phisms ¢ such that f oo = f. These are always given by translation by either 0, A1, Ay or
A1+ g

NETmap gives the subgroup of the modular group liftables represented by translations. Be-
ware that these elements map injectively to the modular group of f exactly when DeckMod(f)
is trivial.

If NETmap draws a guess for o in the file filenameSigma.ps, then the last information to
appear in filenameMOD.output deals with symmetries of o;. This calls for an explanation.
Every liftable element ¢ induces a pullback map o, on Teichmiiller space such that o o
o, = 03 0 0y, where ¢ is an image of ¢ under the extended modular group virtual multi-
endomorphism. (The map o3 is uniquely determined even if ¢ is not.) Liftables do not

always account for all pairs of isometries ¢ and v such that oy 01 = 1 ooy. Such isometries
Y are symmetries of ;. Symmetries which do not arise from liftables are extra symmetries.

NETmap is unable to verify that a general isometry is a symmetry of oy. However, it is able
to reduce the search for symmetries to a finite set of cosets of the group of liftables. It then
checks representatives of these cosets for many conditions which symmetries satisfy. In this
way it might determine that o, has no extra symmetries. If a representative of a nontrivial
coset satisfies all conditions checked, then NETmap reports that it seems to have found an
extra symmetry. It gives the potential extra symmetry 1 together with its image v under
the modular group endomorphism.

3.3 THE FILE FILENAME_TABLE.OUTPUT

For every slope 2 such that both |p[and |g| are less than or equal to the numerator-
denominator bound input at the keyboard, NETmap evaluates p f(%) and applies the half-space
theorem to § if appropriate. The file filename_Table.output contains the numerical results
of these computations.

The output in filename_Table.output appears in eight columns. The first column contains

the slopes § determined by the numerator-denominator bound with ged(p, ¢) = 1 and ¢ > 0.

Column 2 contains %: = (). This entry is blank if and only if (%) = ©. Column 3
contains ¢ = ¢(£). Column 4 contains d = d(%). If either pg(2) = © or py(?) = £, then the
rest of this row is blank. The slope function computation is an implementation of Theorem
5.3 of [1]. The computation of ¢ and d is an implementation of Theorem 4.1 of [1].

Suppose that Mf(%) # © and that ,uf(}—;) + g. Then NETmap applies the half-space theorem
to g. As discussed above, NETmap shrinks the intervals given by the half-space theorem to
obtain intervals with rational endpoints. It obtains a half-space H in the upper half-plane.
The part of the boundary of H which lies in the upper half-plane is either a Euclidean
semicircle or a vertical ray. If the boundary is a semicircle, then its center appears in column

12 THE COMPUTER PROGRAM NETMAP

5 as a point on the z-axis. If the boundary is a ray, then the x-value of this ray appears
in column 5. The heading of column 6 refers to the shading of H in filenameHalfSpace.ps.
Suppose that the boundary of H is a semicircle. If H is within the semicircle, then the
shading is in, and otherwise it is out. Suppose that the boundary of H is a ray. If H is
left of the ray, then the shading is left, and otherwise it is right. In the case of a semicircle,
let C' be its center and let R be its radius. The last two columns give the endpoints of the
semicircle, C' — R and C'+ R. These are the endpoints of an open interval which contains
no negative reciprocals of Thurston obstructions.

3.4 THE FILE FILENAMEMOD2CORRE.PS

If we reduce the numerator and denominator of a slope (with numerator and denominator
relatively prime) modulo 2, we obtain either %, % or %. Allowing the nonslope, we obtain
four possible values: 0, 1, co and ®. The file filenameMod2Corre.ps contains a graph with
four vertices labeled 0, 1, oo and ®. It has a directed edge from vertex x to vertex y if and
only if there exists a slope s “congruent to the label of x modulo 2”7 and the image of s under
the slope function is “congruent to the label of ¥ modulo 2”. This edge is labeled with the
multiplier of slope s. Instead of drawing a distinct edge for every multiplier, NETmap draws
just one edge with multiple multipliers. It doesn’t label edges to the nonslope because these

multipliers all equal 0.
3.5 THE FILE FILENAMEDYNPORTRAIT.PS

The file filenameDynPortrait.ps contains abbreviated dynamic portraits, one for each
translation term for which the resulting Thurston map is a NET map. More precisely,
for each such function there is a weighted directed graph. The vertices corresponding to the
four postcritical points are labeled A, B, C and D. A preimage in the fundamental domain
Fy of each is given. Every other vertex is labeled with an integer. A vertex labeled with
an integer n represents n critical points which are not postcritical and which map to the
same postcritical point. The last convention permits the drawing and quick comprehension
of dynamic portraits of NET maps with large degrees. These abbreviated dynamic portraits
are drawn so that if two of them are isomorphic, then they are identical.

3.6 THE FILE FILENAMEGRAPHMU.PS

The file filenameGraphMu.ps has a graph of the slope function. The values of x used are
those slopes determined by the maximum of 50 and the numerator-denominator bound input
at the keyboard.

3.7 THE FILE FILENAMEGRAPHMULINES.PS

The file filenameGraphMuLines.ps has another graphical representation of the slope function.
To explain it, let m be the least common multiple of the lengths of the slope function cycles
which the program finds. Let § be a slope in the set determined by the maximum of 50 and
the numerator-denominator bound input at the keyboard. Suppose that the mth iterate of

the slope function at § is equal to an extended rational number Zq’—;, expressed in reduced

form with ¢’ > 0. Then filenameGraphMuLines.ps contains a line segment joining (p, ¢) and
', q)

3.8 THE FILE FILENAMEGRAPHMUTORUS.PS

THE COMPUTER PROGRAM NETMAP 13

This is another graphical representation of the slope function. Here we view slopes as
lying in the 1-point compactification of R. So, disregarding ©, the slope function 1y maps
points on a circle to points on a circle. The resulting graph then lies on a torus. This torus
is shown in filenameGraphMuTorus.ps as a square whose opposite sides are to be identified.

The sides of the square in filenameGraphMuTorus.ps are parametrized by a function which
is closely related to Minkowski’s question mark function. The question mark function ? has
the following properties. If § and % are rational numbers in reduced form in the closed unit

interval such that |ps — gr| = 1, then

(:2)-340))]

Furthermore, 7(9) = % and ?(7) = 1. The function which parametrizes the sides of the square

in filenameGraphMuTorus.ps satisfies the same functional equation as 7 for all extended

rational numbers (using both %1 and % for 0o0), but for its initial conditions, it maps _Tl to
% and % to % and % to % It maps Q to the set of dyadic rational numbers in the open unit

interval (0, 1).

3.9 THE FILE FILENAMEHALFSPACE.PS

The shaded region in filenameHalfSpace.ps is the union of the half-spaces gotten by ap-
plying the half-space theorem to slopes £ such that [p| and [g| are bounded by the numerator-
denominator bound input at the keyboard. See the discussion of the half-space computations
in Section 3.1 for details.

3.10 THE FILE FILENAMEPRENDGM.PS

This file contains a virtual presentation diagram for f. In other words, it is a graphical
representation of the input data. It determines the map f except for omitting the translation
term. In this virtual presentation diagram, the origin is drawn as a circle rather than a dot.

3.11 THE FILE FILENAMESIGMA.PS

The file filenameSigma.ps contains a guess at the form of Thurston’s pullback map oy.
It contains two views of the upper half-plane. The top view corresponds to the domain of
os, and the bottom view corresponds to the range. In the top view, solid black hyperbolic
geodesics are the reflection axes of reflections in the list of EMOD generators given in file-
nameMOD.output. Dotted black hyperbolic geodesics are not reflection axes of generators.
The same is true for the bottom view with “generators” replaced by “generator images”.
The top view is the upper half-plane analog of filenameEMODTree.ps. It is a fundamental
domain for the action of the subgroup of liftables in the extended modular group. The
bottom view shows a guess at the image of this fundamental domain under o;. It is an inte-
resting problem to combine the visual information in filenameSigma.ps with the numerical
information in filenameMOD.output to determine the form of oy.

This guess at the form of o is not always correct. If the image of the extended modular
group in GL(2,7Z) is a reflection group, then all boundary geodesics are reflection axes, and
this guess seems to always be correct. In general this group is not a reflection group, and
images of boundary geodesics which are not reflection axes are always very much in doubt.
This guess at the image is always a union of fundamental domains for the action of PGL(2, Z)
on the upper half-plane.

14 THE COMPUTER PROGRAM NETMAP

NETmap labels axes of liftable reflections, and o respects these labels. For example, a
geodesic in the domain labeled “A” maps to the geodesic in the image labeled “A”.

NETmap marks folds. A fold is a union of consecutive edges in the domain such that its
endpoints have equal images under o; and oy seems to map the fold into an arc. (The word
“seems” is needed because the images of dashed edges are always in doubt.) The fold is
folded (noninjectively) into the arc. Such edges in the domain are marked by what might
be called an underline. Figure 4 shows two folds, one extending from 1 to g and the other
from g to % There is no guarantee that NETmap marks all folds, although this seems to be
true; there are some types of complicated folds, (which might not even exist) which it does
not recognize.

Reflection axes of extra symmetries (for which, see the end of Section 3.2) which are
reflections are drawn in color, as are their images under o¢, and oy respects colors. The
reflection axes of four reflections which are extra symmetries are drawn in the top half of
Figure 4.

Special points on the z-axis of both views of the upper half-plane are marked by ticks.
The program labels these ticks from left to right. If the label of a tick does not overlap the
printed label on the left, then this label is printed. If this label overlaps the printed label on
the left, then this label is not printed.

Here is one way in which this information can be used to determine o;. Consider sam-
pleSigma.ps. For the domain we see a hyperbolic quadrilateral, and for the range we see a
hyperbolic triangle. The image in GL(2,Z) of our group of EMOD liftables is a reflection
group, generated by four reflections. It is not hard to prove that modular group virtual en-
domorphisms always map reflections to reflections, and Thurston pullback maps always map
reflection axes into reflection axes. According to sampleMOD.output and sampleSigma.ps,
the geodesics with endpoints 0, co and 0, % both map into the geodesic with endpoints —2
and 0. The geodesic with endpoints % and 1 maps into the geodesic with endpoints 0 and oo.
The geodesic with endpoints 1 and co maps into the geodesic with endpoints —1 and co. We
view the domain quadrilateral as a conformal triangle with vertices at %, 1 and oco. By the
Riemann mapping theorem there exists a unique conformal equivalence from this conformal
triangle to the triangle in the bottom half of sampleSigma.ps taking % to 0, 1 to oo and oo
to —1 4+ 7. We extend this map to the entire upper half-plane using the reflection principle.
We obtain an analytic map F' from the upper half-plane to itself. This map F' satisfies all
of the functional equations satisfied by o, that is, F' o 0, = 05 0 F, where ¢ is a liftable,
and @ is the image of this liftable under the virtual multi-endomorphism. The map F' also
extends continuously in the augmented Teichmiiller space topology to the set of extended
rational numbers, and it agrees with oy at every extended rational number.

Now we pass to the quotients of the extended upper half-plane under the action of the
modular group liftables and the image of this group under the virtual multi-endomorphism.
The file sampleMOD.output shows that both of these compact Riemann surfaces have genus
0. We see that both o; and F' induce degree 1 maps from the first Riemann surface to the
second and they agree at the three cusps. They must be equal. It follows that oy = F'.

After verifying that the potential extra symmetries in Figure 4 are indeed extra symme-
tries, a similar argument obtains an analogous description of the pullback map of 61HClass8
using Figure 4.

3.12 THE FILE FILENAMETREE PMOD.pPs

THE COMPUTER PROGRAM NETMAP 15

IO

INH

\
2
3

NIl WH

61HClass8

Pl
ol
(=t

F1GURE 4. 61HClass8Sigma.ps

This file deals with the group of liftables relative to the pure modular group PMOD.
This group acts on a tree which we call the Stern-Brocot tree. The Stern-Brocot tree is
a combinatorial model of the tree which consists of all edges of finite hyperbolic length in
the standard tesselation of the upper half-plane for GL(2,7Z). The rest of this paragraph is
devoted to a very brief discussion of the Stern-Brocot tree. We view this tree as embedded in
the plane. The complementary regions are labeled by extended rational numbers. Suppose
that two adjacent regions have labels * and t. Then s > 0, u > 0, ged(r,s) = 1 and
ged(t,u) = 1. If in addition » > 0 and t > 0, then the region below and adjacent to these
regions has label gj:fb Reflection about the horizontal line through the valence 2 vertex

16 THE COMPUTER PROGRAM NETMAP

contained in the regions with labels (T) and (—1) takes region with label % to region with label
—=. Every extended rational number is the label of exactly one region. Let e be an edge.
One vertex of e has valence 2, and one vertex of e has valence 3. We orient e toward its
vertex of valence 3. With this orientation, let ¢ be the label of the region on the left, and
let & be the label of the region on the right. Then | Y] = £1. If this determinant is —1,
then we multiply one column of [¢ 4] by —1. We obtain an element of SL(2,Z), which leads
to an element of PSL(2,Z). This map from edge to element of PSL(2,Z) is a bijection. This
bijection leads to a left action of PSL(2,7Z) on the Stern-Brocot tree. A bit more effort leads
to an action of PGL(2,Z).

NETmap draws a portion of the Stern-Brocot tree. It always draws the same portion, as
shown in sampleTreePMOD.ps. It also draws a fundamental domain for the action of the
group of PMOD liftables on the Stern-Brocot tree, or as much as fits in the drawn portion.
The green edges form the fundamental domain. The edges containing the leaves of this tree
are labeled whether they are in the fundamental domain or not. Edges with equal labels are
equivalent under the action of the group.

Because the Stern-Brocot tree is isomorphic to a subgraph of the 1-skeleton of the standard
tesselation of the upper-half plane for GL(2,7Z), this Stern-Brocot tree fundamental domain
can be viewed as a spine of a fundamental domain for the action of the group on the upper
half-plane.

3.13 THE FILE FILENAMETREE MOD.ps
This is the modular group analog of filenameTreePMOD.ps, described in Section 3.12.
3.14 THE FILE FILENAMETREE EMOD ps

This is the extended modular group analog of filenameTreePMOD.ps, described in Section
3.12. There is a difference here because EMOD allows for reversal of orientation. The
difference is that in the case of EMOD, it is possible for an edge of the fundamental domain
to be fixed by a reflection. Such edges are red instead of green. Similarly, an edge not in the
fundamental domain has a red label if and only if some orientation-reversing group element
takes it into the fundamental domain.

4. INTEGER OVERFLOW

Considerable pains have been taken to minimize the possibility of integer overflow. Inte-
gers are stored using 32 bits. Their absolute values are at most 23! — 1 = 2,147,483, 647.
Whenever there is potential for integer overflow during addition, subtraction or multiplica-
tion, the computation is performed using 64 bits. If the result can be stored using 32 bits,
then computation proceeds unabated. If the result cannot be stored using 32 bits, then the
segment of the program containing this computation is usually aborted and an error message
is issued with details.

There are some situations in which integer overflow is in some sense harmless. This can
happen during the supplemental half-space computation. Consider how the supplemental
half-space computation proceeds. We search for a rational number which has not been
excluded. Suppose that we find such a rational number ¢. We then apply either the half-
space theorem or the extended half-space theorem to —1/t. Suppose that integer overflow
occurs during this application of either the half-space theorem or the extended half-space

THE COMPUTER PROGRAM NETMAP 17

theorem. Then the program simply discards ¢t and searches for another rational number.
Thus it is possible for the result of the supplemental half-space computation to be valid even
when integer overflow occurs.

Nearly all instances of integer overflow generate error messages. These error messages
appear at the bottom of the terminal and the main output file. Integer overflow does not
invalidate any output.

In theory NETmap detects all instances of integer overflow, except one kind: it assumes
that all input values can be stored using 32 bits.

REFERENCES

[1] J. W. Cannon, W. J. Floyd, W. R. Parry and K. M. Pilgrim, Nearly Euclidean Thurston maps,
Conformal Geometry and Dynamics 16 (2012), 209-255.

[2] W. Floyd, G. Kelsey, S. Koch, R. Lodge, W. Parry, K. M. Pilgrim, E. Saenz, Origami, affine maps,
and complex dynamics, Arnold Math. J. 3 (2017), 365-395.

[3] W. J. Floyd, W. R. Parry and K. M. Pilgrim, Presentations of NET maps, Fundamenta Math. 244
(2019), 49-72.

[4] W. J. Floyd, W. R. Parry and K. M. Pilgrim, Modular groups, Hurwitz classes and dynamic portraits
of NET maps, Groups, Geometry, and Dynamics, 13 (2019), 47-88.

[5] W. J. Floyd, W. R. Parry and K. M. Pilgrim, Rationality is decidable for nearly Euclidean Thurston
maps, in preparation.

[6] S. Koch, Teichmiiller theory and critically finite endomorphisms, Advances in Mathematics Vol. 248,
2013.

[7] W. Parry, NET map slope functions, submitted.

[8] J. Sijsling and J. Voight, On computing Belyi maps, Publ. Math. Besancon: Algebre Théorie Nr.
2014/1, Presses Univ. Franche-Comté, Besancon, 73-131.

