

## NET MAPS OF DEGREE 2

Every Thurston map of degree 2 with exactly four postcritical points is a NET map. There are 16 possible dynamic portraits of such maps. The numbering of the portraits is the same as in the enumeration of portraits elsewhere on this web site, but the labellings of the postcritical points by a, b, c, and d is not consistent with the labellings used there.

- (1)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad \beta \xrightarrow{2} d \rightarrow b$
- (2)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad \beta \xrightarrow{2} d \rightarrow c$
- (3)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad \beta \xrightarrow{2} c \rightarrow d \rightarrow d$
- (4)  $\alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow b$
- (5)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad c \xrightarrow{2} d \rightarrow c$
- (6)  $\alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow d$
- (7)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow c$
- (8)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad d \xrightarrow{2} d$
- (9)  $\alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow d$
- (10)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad d \xrightarrow{2} d$
- (11)  $\alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow c$
- (12)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow b$
- (13)  $a \xrightarrow{2} b \xrightarrow{2} c \rightarrow d \rightarrow a$
- (14)  $a \xrightarrow{2} b \rightarrow a, \quad c \xrightarrow{2} d \rightarrow c$
- (15)  $a \xrightarrow{2} b \rightarrow c \xrightarrow{2} d \rightarrow a$
- (16)  $a \xrightarrow{2} b \rightarrow c \rightarrow a, \quad d \xrightarrow{2} d$

The first three dynamic portraits are portraits of Euclidean Thurston maps. Portraits 8), 10), and 16) are portraits of topological polynomials. In Section 1 we give (in terms of normal forms) the possible rational maps that realize these portraits. In Section 2 for each dynamic portrait we give a subdivision map (for a finite subdivision rule) that realizes the portrait. In Section 3 for each of these subdivision maps we give a wreath recursion for the associated iterated monodromy group.

### 1. RATIONAL MAPS

Since the degree is 2, it is straightforward to compute the rational maps realizing a given dynamic portrait. For convenience, we normalize so that the first critical value is 0, the second critical value is  $\infty$ , and one of the

other postcritical points (the image of the first critical value if it isn't already normalized) is 1.

Five of the dynamic portraits, 8), 9), 12), 13), and 16) are only realized by unobstructed maps. This was already known by [?] for portrait 16, and for all five it is straightforward to show this by core arc arguments. Here is the idea. We need to show that a Thurston map with this dynamic portrait cannot have a Thurston obstruction. Suppose  $\gamma$  is a simple closed curve that is nontrivial and nonperipheral. The complement of  $\gamma$  in the 2-sphere is a pair of open disks, and each of these disks contains exactly two postcritical points. In each open disk there is an embedded arc that joins the two postcritical points in that disk. Either of these arcs is a *core arc*. The preimage of  $\gamma$  is the boundary of a regular neighborhood of the preimage of either core arc. For each of the five portraits, one can show that the preimage of  $\gamma$  either maps by degree 2 (and so has multiplier 1/2) or isn't in the homotopy class of  $\gamma$ . The arguments don't depend on detailed knowledge of  $\gamma$ , but only on which pairs of postcritical points are in the complementary open disks. Since you can work with either core arc, for each portrait there are only three cases that one has to consider. We will give more detail of the argument in the case of dynamic portrait 8).

$$(1) \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad \beta \xrightarrow{2} d \rightarrow b$$

If we set  $a = 0$ ,  $b = 1$ , and  $d = \infty$ , then  $f(z) = \frac{(z-\alpha)^2}{(z-\beta)^2}$ , where either  $\alpha = \pm i$  and  $\beta = \mp i$  or  $\alpha = -1 \pm \sqrt{2}$  and  $\beta = -1 \mp \sqrt{2}$ .

$$(2) \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad \beta \xrightarrow{2} d \rightarrow c$$

If we set  $a = 0$ ,  $b = 1$ , and  $\infty$ , then  $f(z) = \frac{\beta^2 (z-\alpha)^2}{\alpha^2 (z-\beta)^2}$ , where  $\alpha = \frac{1}{2}(-1 \pm \sqrt{7}i)$  and  $\beta = \frac{1}{2}(5 \mp \sqrt{7}i)$ .

$$(3) \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad \beta \xrightarrow{2} c \rightarrow d \rightarrow d$$

If we set  $a = 0$ ,  $b = 1$ , and  $c = \infty$ , then  $f(z) = \frac{\beta^2 (z-\alpha)^2}{\alpha^2 (z-\beta)^2}$ , where  $\alpha = \frac{1}{4}(-1 \pm \sqrt{7}i)$  and  $\beta = \frac{1}{16}(5 \mp \sqrt{7}i)$ .

$$(4) \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow b$$

If we set  $a = 0$ ,  $b = 1$ , and  $c = \infty$ , we get  $f(z) = \frac{1}{\alpha^2} \frac{(z-\alpha)^2}{(z-1)^2}$ , where  $\alpha = -\frac{1}{2} \pm \frac{1}{2}i$ .

$$(5) \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad c \xrightarrow{2} d \rightarrow c$$

If we set  $a = 0$ ,  $b = 1$ , and  $d = \infty$ , then  $f(z) = \frac{1}{4} \frac{(z+1/2)^2}{(z-1/4)^2}$ .

$$(6) \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow d$$

If we set  $a = 0$ ,  $b = 1$ , and  $c = \infty$ , we get  $f(z) = \frac{1}{\alpha^2} \frac{(z-\alpha)^2}{(z-1)^2}$ , where  $\alpha = -1 \pm i$ .

$$(7) \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow c$$

If we set  $a = 0$ ,  $b = 1$ , and  $d = \infty$ , we get  $f(z) = \frac{4(z+2)^2}{(z-4)^2}$ .

$$(8) \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad d \xrightarrow{2} d$$

If we set  $\alpha = 0$  and  $d = \infty$ , then we get the quadratic polynomials  $f(z) = z^2 + c$ , where  $c \approx -1.54369$  or  $c \approx -0.228155 \pm 1.11514i$ . One can see easily from a core arc argument that every Thurston map with this portrait is unobstructed. Suppose  $\gamma$  is a nontrivial curve in the complement of the postcritical set that is nonperipheral. We consider a core arc  $c_\gamma$  that is disjoint from  $\gamma$ . It suffices to consider a core arc joining  $c$  and  $d$ , a core arc joining  $b$  and  $d$ , and a core arc joining  $a$  and  $d$ .

Since  $d$  maps to itself by degree 2 and  $b$  and  $c$  map to  $c$  by degree 1, the preimage of a core arc  $c_\gamma$  joining  $c$  and  $d$  will be the union of an arc joining  $b$  and  $d$  and an arc joining  $c$  and  $d$ . The boundary of a regular neighborhood of the preimage of  $c_\gamma$  will be peripheral so there can't be a Thurston obstruction with  $a$  and  $b$  in one complementary component and  $c$  and  $d$  in the other complementary component.

The preimages of  $b$  are  $a$  and a point  $p_b$  which maps to  $b$  by degree 1. The preimage of a core arc  $c_\gamma$  joining  $b$  and  $d$  will be the union of an arc joining  $a$  and  $d$  and an arc joining  $p_b$  and  $d$ . The boundary of a regular neighborhood of the preimage of  $c_\gamma$  has  $b$  and  $d$  in one component of the complement, so it can't be in the same homotopy class as  $\gamma$ .

Finally suppose there is a core arc  $c_\gamma$  joining  $a$  and  $d$ . Then its preimage is a union of two arcs which join  $a$  and  $d$ . The boundary of a regular neighborhood of the preimage of  $c_\gamma$  is a pair of curves. If  $\gamma$  is a Thurston obstruction, then one complementary component of the preimage of  $c_\gamma$  must contain  $a$  and the other complementary component must contain  $b$  and  $c$ . But the core arc  $c_\gamma$  is disjoint from a core arc joining  $b$  and  $c$ . The two preimages of  $c$  are  $b$  and  $c$ , and  $a$  is a preimage of  $b$ , so the preimage of this core arc contains an arc joining  $a$  and  $b$  or an arc joining  $a$  and  $c$ . This is impossible, since this preimage is disjoint from the preimage of  $c_\gamma$  and  $a$  is not in the same complementary component of this preimage as  $b$  or  $c$ .

Hence no Thurston map with this dynamic portrait can have a Thurston obstruction.

$$(9) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow d$$

If we set  $a = 0$ ,  $b = \infty$ , and  $c = 1$ , we get  $f(z) = (z - \alpha)^2/z^2$ , where  $\alpha \approx 0.456311$  or  $\alpha \approx 1.77184 \pm 1.11514i$ . This family is completely unobstructed.

$$(10) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad d \xrightarrow{2} d$$

If we set  $\alpha = 0$  and  $d = \infty$ , then we get the quadratic polynomials  $f(z) = z^2 + c$ , where  $c = \pm i$ .

$$(11) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow c$$

If we set  $a = 0$ ,  $b = \infty$ , and  $c = 1$ , we get  $f(z) = \frac{(z - 1/2)^2}{z^2}$ .

$$(12) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow b$$

If we set  $a = 0$ ,  $b = 1$ , and  $d = \infty$ , we get  $f(z) = \frac{(z-a)^2}{(z+a)^2}$ , where  $a \approx -3.38298, 0.191488 \pm 0.508852i$ . This family is completely unobstructed.

$$(13) \quad a \xrightarrow{2} b \xrightarrow{2} c \rightarrow d \rightarrow a$$

If we set  $b = 0$ ,  $c = \infty$ , and  $d = 1$ , then  $f(z) = \frac{(z-\frac{1}{2}(3 \pm \sqrt{5}))^2}{z^2}$ . This family is completely unobstructed.

$$(14) \quad a \xrightarrow{2} b \rightarrow a, \quad c \xrightarrow{2} d \rightarrow c$$

It is easy to see algebraically that there is no rational map with this dynamic portrait.

$$(15) \quad a \xrightarrow{2} b \rightarrow c \xrightarrow{2} d \rightarrow a$$

If we set  $b = 0$ ,  $c = 1$ , and  $d = \infty$ , we get  $f(z) = a * \frac{(z-a)^2}{(z-1)^2}$ , where  $a = \frac{1}{2}(-1 \pm \sqrt{3}i)$ . Because of the symmetry in the dynamic portrait, these two rational maps are conjugate.

$$(16) \quad a \xrightarrow{2} b \rightarrow c \rightarrow a, \quad d \xrightarrow{2} d$$

If we set  $a = 0$  and  $d = \infty$ , then we get the quadratic polynomials  $f(z) = z^2 + c$ , where  $c \approx -1.75488$  (the airplane) or  $c \approx -0.122561 \pm 0.744862i$  (the rabbit and the twisted rabbit). From Bartholdi-Nekrashevych [?] or a core-arc argument, one can show that this family is completely unobstructed.

## 2. SUBDIVISION MAPS

In this section we give figures for subdivision maps realizing these dynamic portraits. For a figure of a subdivision map  $\sigma_R$ , the right-hand side shows the 1-skeleton of the subdivision complex  $S_R$  (viewing the 2-sphere as the plane compactified by a point at infinity) and the left-hand side shows the 1-skeleton of its subdivision  $\mathcal{R}(S_R)$ . Here a label in black is the label of the point and a label in red is the label of the image point under the subdivision map.

$$(1) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad \beta \xrightarrow{2} d \rightarrow b$$

Figure 1 shows a subdivision map  $f_1$  realizing this portrait.

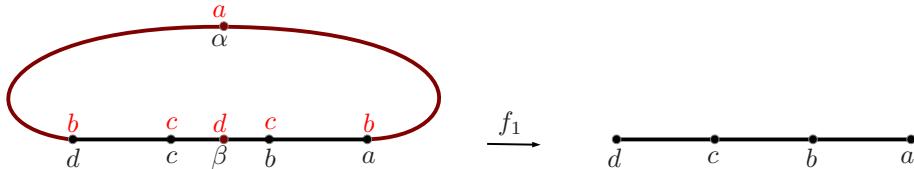
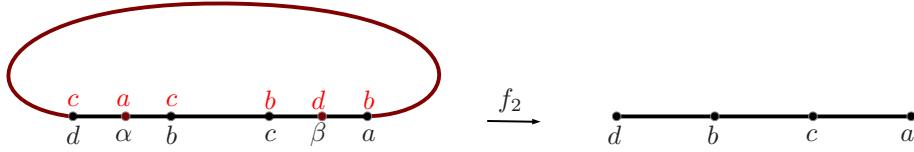


FIGURE 1. The subdivision map  $f_1$ .

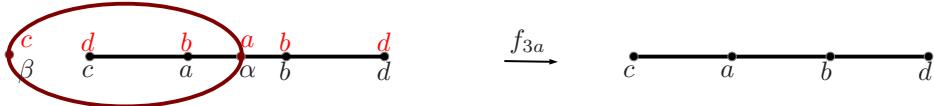
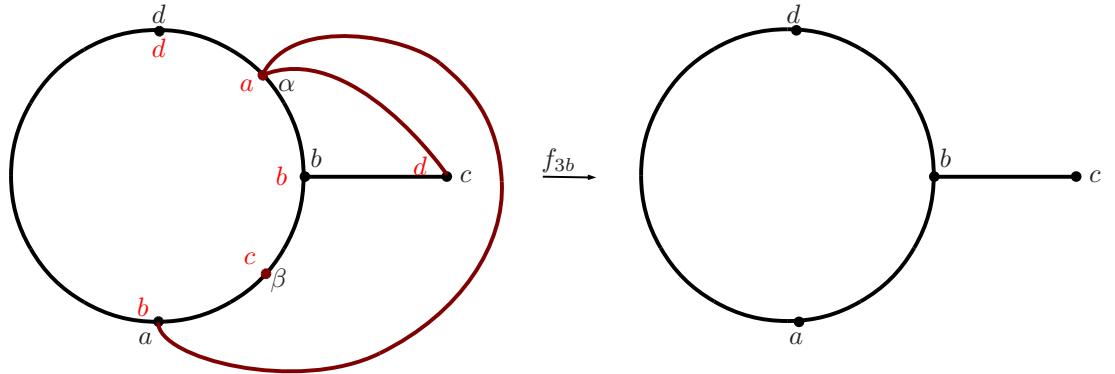
$$(2) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad \beta \xrightarrow{2} d \rightarrow c$$

Figure 2 shows a subdivision map  $f_2$  realizing this portrait.

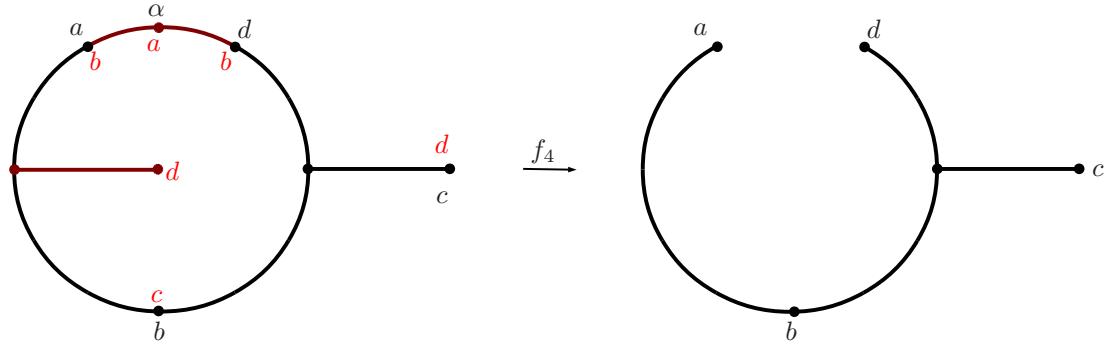
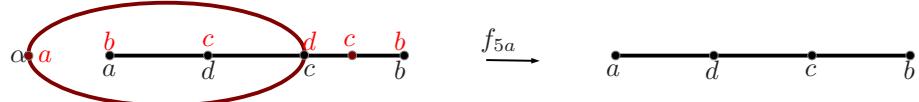
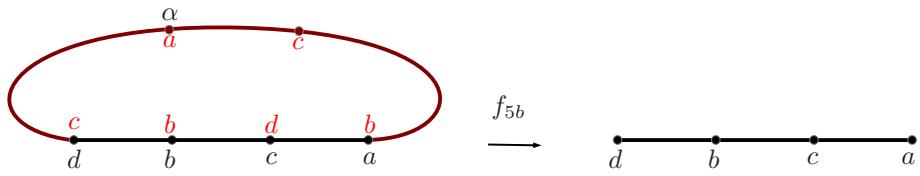
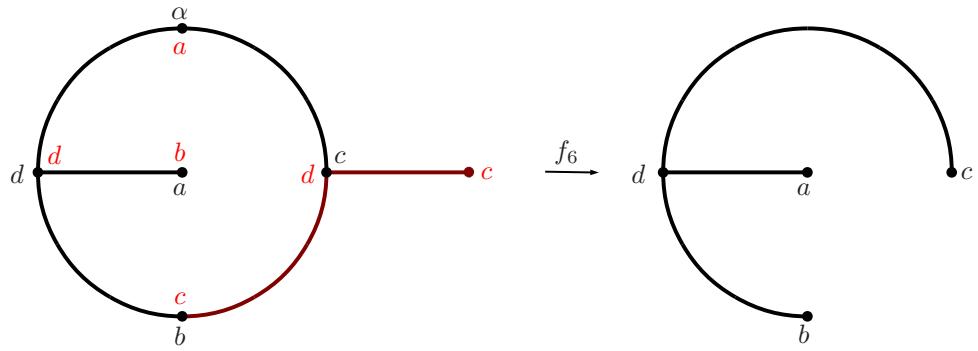
FIGURE 2. The subdivision map  $f_2$ .

$$(3) \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad \beta \xrightarrow{2} c \rightarrow d \rightarrow d$$

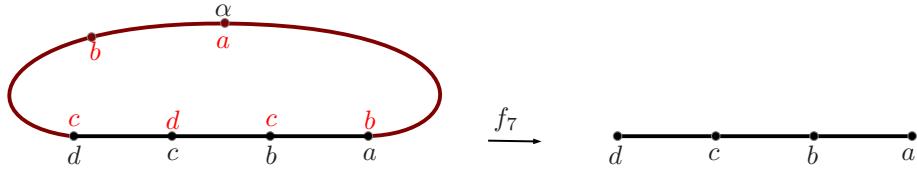
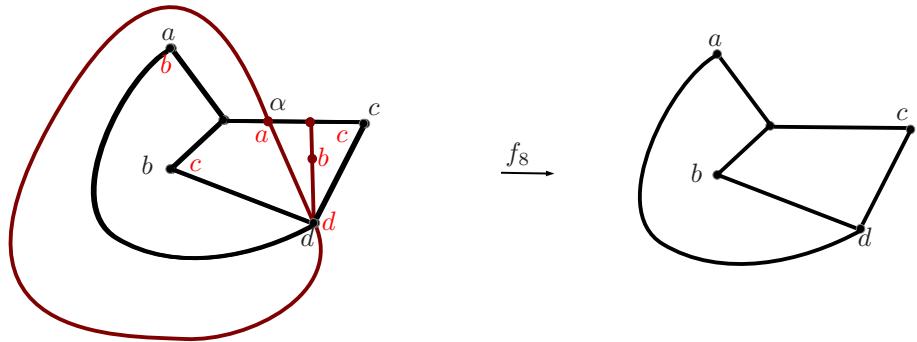
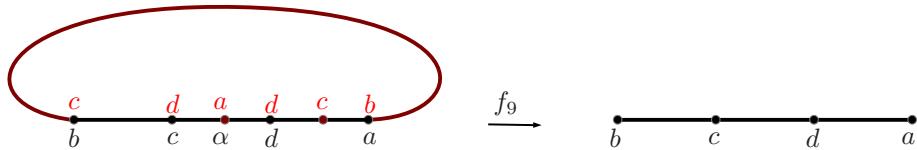
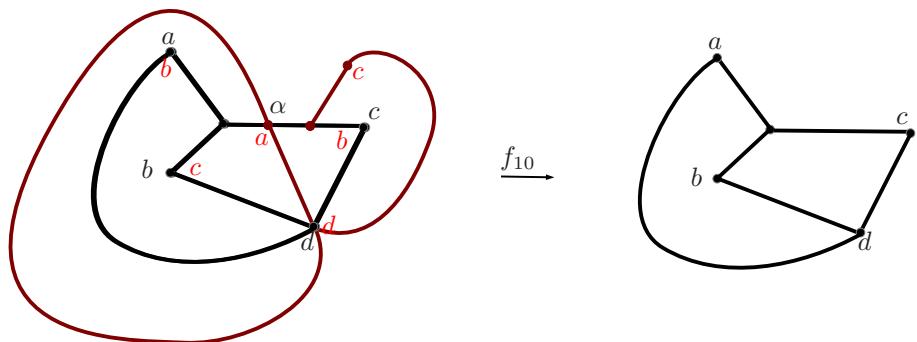
Figure 3 shows a subdivision map  $f_{3a}$  realizing this portrait. As was shown in [1], a rational map with this dynamic portrait can not be a subdivision map for a finite subdivision rule whose subdivision complex has 1-skeleton either a tree or a circle. Figure 4 shows an expanding subdivision map  $f_{3b}$  for a finite subdivision rule realizing this dynamic portrait.

FIGURE 3. The subdivision map  $f_{3a}$ .FIGURE 4. The subdivision map  $f_{3b}$ .

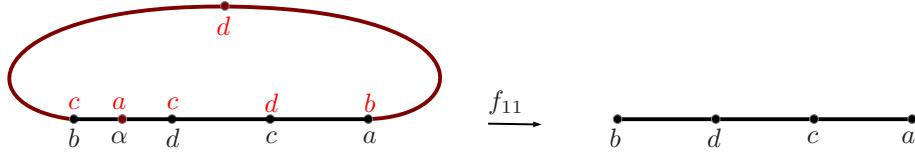
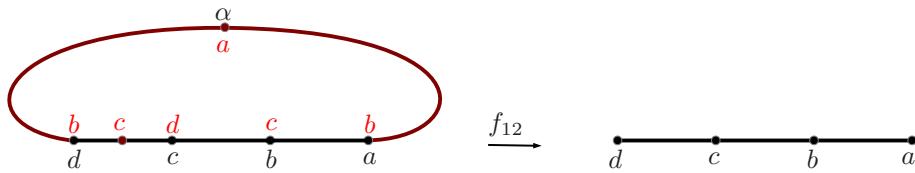
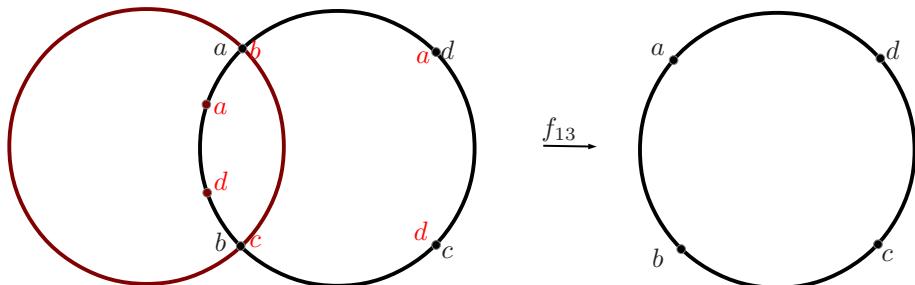
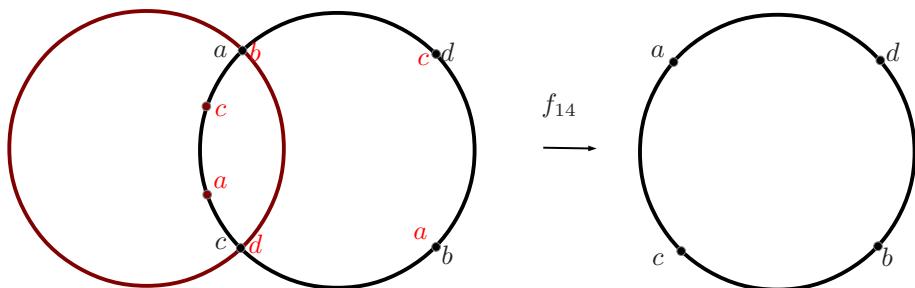
- (4)  $\alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow b$
- (5)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad c \xrightarrow{2} d \rightarrow c$
- (6)  $\alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow d$
- (7)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow c$
- (8)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad d \xrightarrow{2} d$
- (9)  $\alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow d$
- (10)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad d \xrightarrow{2} d$

FIGURE 5. The subdivision map  $f_4$ .FIGURE 6. The subdivision map  $f_{5a}$ .FIGURE 7. The subdivision map  $f_{5b}$ .FIGURE 8. The subdivision map  $f_6$ .

(11)  $\alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow c$   
 (12)  $\alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow b$

FIGURE 9. The subdivision map  $f_7$ .FIGURE 10. The subdivision map  $f_8$ .FIGURE 11. The subdivision map  $f_9$ .FIGURE 12. The subdivision map  $f_{10}$ .

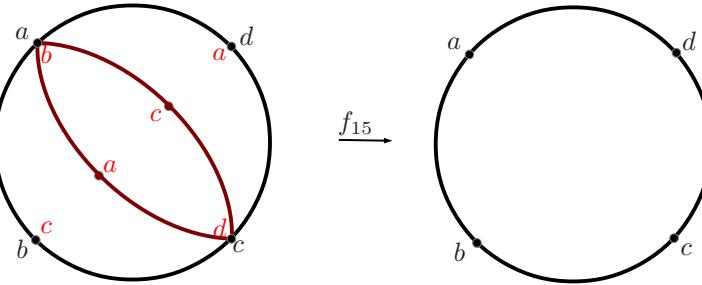
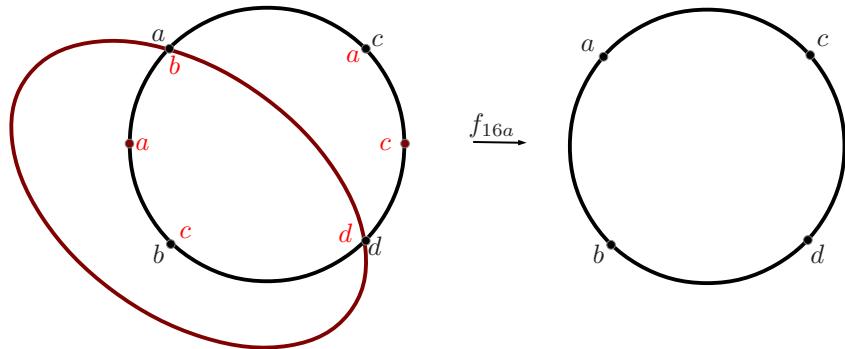
(13)  $a \xrightarrow{2} b \xrightarrow{2} c \rightarrow d \rightarrow a$   
 (14)  $a \xrightarrow{2} b \rightarrow a, \quad c \xrightarrow{2} d \rightarrow c$   
 (15)  $a \xrightarrow{2} b \rightarrow c \xrightarrow{2} d \rightarrow a$

FIGURE 13. The subdivision map  $f_{11}$ .FIGURE 14. The subdivision map  $f_{12}$ .FIGURE 15. The subdivision map  $f_{13}$ .FIGURE 16. The subdivision map  $f_{14}$ .

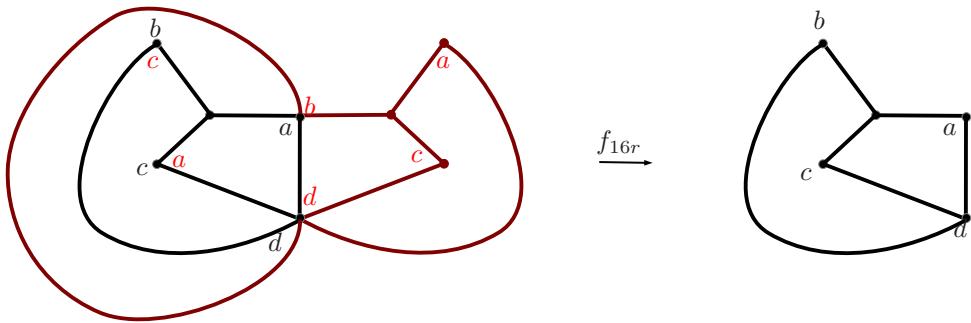
$$(16) \quad a \xrightarrow{2} b \rightarrow c \rightarrow a, \quad d \xrightarrow{2} d$$

Figure 18 shows the subdivision map  $f_{16a}$  (which is equivalent to the airplane) which realizes this ramification portrait.

Figure 19 shows the subdivision map  $f_{16r}$ , which is equivalent to the rabbit. The 1-skeleton of the subdivision complex  $S_{\mathcal{R}}$  shown

FIGURE 17. The subdivision map  $f_{15}$ .FIGURE 18. The subdivision map  $f_{16a}$ .

in Figure 19 comes from a Hubbard tree for the rabbit polynomial together with the rays from  $a$ ,  $b$ , and  $c$  to  $d$  (which corresponds to  $\infty$ ).

FIGURE 19. The subdivision map  $f_{16r}$ .

### 3. WREATH RECURSIONS

$$(1) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad \beta \xrightarrow{2} d \rightarrow b$$

The wreath recursion for  $f_1$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, d \rangle, \quad c = \langle b, dcd^{-1} \rangle, \quad d = \langle ba, dc \rangle(12), \quad dcba = 1$$

Note that in the iterated monodromy group  $a^2$  and  $b^2$  are trivial.

Since  $b^2 = \langle a^2, d^2 \rangle$ ,  $b^2$  is also trivial.

$$(2) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad \beta \xrightarrow{2} d \rightarrow c$$

The wreath recursion for  $f_2$  is as follows:

$$a = \langle d^{-1}, d \rangle(12), \quad b = \langle a, dbcb^{-1}d^{-1} \rangle, \quad c = \langle d, dbd^{-1} \rangle, \quad d = \langle a, a^{-1} \rangle(12), \quad dbca = 1$$

$$(3) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad \beta \xrightarrow{2} c \rightarrow d \rightarrow d$$

The wreath recursion for  $f_{3a}$  is as follows:

$$a = \langle a^{-1}c^{-1}, ca \rangle(12), \quad b = \langle b, cac^{-1} \rangle, \quad c = \langle 1, 1 \rangle(12), \quad d = \langle d, c \rangle, \quad cabd = 1$$

$$(4) \quad \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow b$$

The wreath recursion for  $f_{14}$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, d \rangle, \quad c = \langle a^{-1}, c^{-1}d^{-1} \rangle(12), \quad d = \langle 1, c \rangle, \quad abdc = 1$$

$$(5) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad c \xrightarrow{2} d \rightarrow c$$

The wreath recursion for  $f_{5a}$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, b \rangle, \quad c = \langle ada^{-1}, 1 \rangle, \quad d = \langle b^{-1}, d^{-1}a^{-1} \rangle(12), \quad adcb = 1$$

The wreath recursion for  $f_{5b}$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, dbd^{-1} \rangle, \quad c = \langle 1, d \rangle, \quad d = \langle b^{-1}d^{-1}, a^{-1} \rangle(12), \quad dbca = 1$$

$$(6) \quad \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow d$$

$$(7) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow c$$

The wreath recursion for  $f_7$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, 1 \rangle, \quad c = \langle b, d \rangle, \quad d = \langle d^{-1}, dc \rangle(12), \quad dcba = 1$$

$$(8) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad d \xrightarrow{2} d$$

The wreath recursion for  $f_8$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, 1 \rangle, \quad c = \langle b, c \rangle, \quad d = \langle a^{-1}c^{-1}, b^{-1} \rangle(12), \quad abdc = 1$$

$$(9) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow d$$

The wreath recursion for  $f_9$  is as follows:

$$a = \langle da, bc \rangle(12), \quad b = \langle a, 1 \rangle(12), \quad c = \langle b, 1 \rangle, \quad d = \langle c, bcd^{-1}b^{-1} \rangle, \quad bcda = 1$$

$$(10) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad d \xrightarrow{2} d$$

The wreath recursion  $f_{10}$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, c \rangle, \quad c = \langle b, 1 \rangle, \quad d = \langle a^{-1}, c^{-1}b^{-1} \rangle(12), \quad abdc = 1$$

$$(11) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow c$$

The wreath recursion for  $f_{11}$  is as follows:

$$a = \langle b^{-1}, b \rangle(12), \quad b = \langle a, 1 \rangle(12), \quad c = \langle b, bdb^{-1} \rangle, \quad d = \langle 1, a^{-1}ca \rangle, \quad bdca = 1$$

$$(12) \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow b$$

The wreath recursion for  $f_{12}$  is as follows:

$$a = \langle 1, 1 \rangle(12), \quad b = \langle a, d \rangle, \quad c = \langle b, 1 \rangle, \quad d = \langle d^{-1}, dc \rangle(12), \quad dcba = 1$$

$$(13) \ a \xrightarrow{2} b \xrightarrow{2} c \rightarrow d \rightarrow a$$

The wreath recursion for  $f_{13}$  is as follows:

$$a = \langle d, 1 \rangle, \quad b = \langle a, 1 \rangle(12), \quad c = \langle 1, b \rangle(12), \quad d = \langle c, 1 \rangle, \quad abcd = 1$$

$$(14) \ a \xrightarrow{2} b \rightarrow a, \quad c \xrightarrow{2} d \rightarrow c$$

The wreath recursion for  $f_{14}$  is as follows:

$$a = \langle b, 1 \rangle, \quad b = \langle a, 1 \rangle(12), \quad c = \langle d, 1 \rangle, \quad d = \langle 1, c \rangle(12), \quad acbd = 1$$

$$(15) \ a \xrightarrow{2} b \rightarrow c \xrightarrow{2} d \rightarrow a$$

The wreath recursion for  $f_{15}$  is as follows:

$$a = \langle d, 1 \rangle, \quad b = \langle a, 1 \rangle(12), \quad c = \langle 1, b \rangle, \quad d = \langle 1, c \rangle(12), \quad abcd = 1$$

$$(16) \ a \xrightarrow{2} b \rightarrow c \rightarrow a, \quad d \xrightarrow{2} d$$

The wreath recursion for  $f_{16a}$  (the airplane) is:

$$a = \langle c, 1 \rangle, \quad b = \langle a, 1 \rangle(12), \quad c = \langle 1, b \rangle, \quad d = \langle b^{-1}, bd \rangle(12), \quad abdc = 1$$

The wreath recursion for  $f_{16r}$  (the rabbit) is as follows:

$$a = \langle c, 1 \rangle, \quad b = \langle 1, a \rangle(12), \quad c = \langle b, 1 \rangle, \quad d = \langle cd, c^{-1} \rangle(12), \quad abcd = 1$$

#### 4. NET DATA FOR HALFSPACE

The program HalfSpace takes as input two points  $\lambda_1$  and  $\lambda_2$  in the plane, and then six more points,  $S_1, \dots, S_6$ , giving endpoints for the spin mirrors. Here are possible inputs for the different possible dynamic portraits, as well as the data in the format  $x \mapsto Ax + B$ . Except for portraits 10) and 16), the presentations are for the NET maps given in the the dynamic portraits lists elsewhere on this site. These NET maps may not be equivalent to the subdivision maps given in Section 2. The presentations given for portraits 10) and 16) are for NET maps equivalent to the maps  $z \mapsto z^2 + i$ , the rabbit, the corabbit, and the airplane.

$$(1) \ \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad \beta \xrightarrow{2} d \rightarrow b$$

$$\lambda_1 = (0, 2), \quad \lambda_2 = (-1, 0), \quad S_1 = (0, 0), \quad S_2 = (0, 2), \quad S_3 = (0, 4), \\ S_4 = (-1, 0), \quad S_5 = (-1, 2), \quad S_6 = (-1, 4)$$

$$x \mapsto \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(2) \ \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad \beta \xrightarrow{2} d \rightarrow c$$

$$\lambda_1 = (2, 2), \quad \lambda_2 = (0, 1), \quad S_1 = (0, 0), \quad S_2 = (2, 2), \quad S_3 = (4, 4), \\ S_4 = (0, 1), \quad S_5 = (2, 3), \quad S_6 = (4, 5)$$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(3) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad \beta \xrightarrow{2} c \rightarrow d \rightarrow d$$

$$\lambda_1 = (2, 0), \lambda_2 = (0, 1), S_1 = (0, 0), S_2 = (2, 0), S_3 = (4, 0),$$

$$S_4 = (0, 1), S_5 = (2, 1), S_6 = (4, 1)$$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(4) \quad \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow b$$

$$\lambda_1 = (2, 0), \lambda_2 = (0, 1), S_1 = (0, 0), S_2 = (2, 0), S_3 = (4, 0),$$

$$S_4 = (1, 0), S_5 = (2, 1), S_6 = (4, 1)$$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(5) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow b, \quad c \xrightarrow{2} d \rightarrow c$$

$$\lambda_1 = (2, 2), \lambda_2 = (0, 1), S_1 = (0, 0), S_2 = (2, 2), S_3 = (4, 4),$$

$$S_4 = (1, 1), S_5 = (2, 3), S_6 = (4, 5)$$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(6) \quad \alpha \xrightarrow{2} a \rightarrow b \xrightarrow{2} c \rightarrow d \rightarrow d$$

$$\lambda_1 = (2, 0), \lambda_2 = (0, 1), S_1 = (0, 0), S_2 = (2, 0), S_3 = (4, 0),$$

$$S_4 = (1, 0), S_5 = (2, 1), S_6 = (4, 1)$$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(7) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow c$$

$$\lambda_1 = (0, 2), \lambda_2 = (-1, -1), S_1 = (0, 0), S_2 = (0, 2), S_3 = (0, 4),$$

$$S_4 = (0, 1), S_5 = (-1, 1), S_6 = (-1, 3)$$

$$x \mapsto \begin{bmatrix} 0 & -1 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$(8) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow c, \quad d \xrightarrow{2} d$$

$$\lambda_1 = (2, 2), \lambda_2 = (-1, 0), S_1 = (0, 0), S_2 = (2, 2), S_3 = (4, 4),$$

$$S_4 = (-1, 0), S_5 = (1, 1), S_6 = (3, 4)$$

$$x \mapsto \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(9) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow d$$

$$\lambda_1 = (0, 2), \lambda_2 = (-1, 0), S_1 = (0, 0), S_2 = (0, 2), S_3 = (0, 4),$$

$$S_4 = (-1, 0), S_5 = (0, 1), S_6 = (-1, 4)$$

$$x \mapsto \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(10) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \rightarrow b, \quad d \xrightarrow{2} d$$

The map  $f(z) = z^2 + i$ :  $\lambda_1 = (2, 0)$ ,  $\lambda_2 = (1, 1)$ ,  $S_1 = (0, 0)$ ,  $S_2 = (2, 0)$ ,  $S_3 = (4, 0)$ ,  $S_4 = (1, 1)$ ,  $S_5 = (1, 0)$ ,  $S_6 = (5, 1)$

$$x \mapsto \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$(11) \quad \alpha \xrightarrow{2} a \xrightarrow{2} b \rightarrow c \rightarrow d \rightarrow c$$

$\lambda_1 = (2, 2)$ ,  $\lambda_2 = (0, 1)$ ,  $S_1 = (0, 0)$ ,  $S_2 = (2, 2)$ ,  $S_3 = (4, 4)$ ,  $S_4 = (0, 1)$ ,  $S_5 = (1, 1)$ ,  $S_6 = (4, 5)$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(12) \quad \alpha \xrightarrow{2} a \rightarrow b \rightarrow c \xrightarrow{2} d \rightarrow b$$

$\lambda_1 = (0, 2)$ ,  $\lambda_2 = (-1, 0)$ ,  $S_1 = (0, 0)$ ,  $S_2 = (0, 2)$ ,  $S_3 = (0, 4)$ ,  $S_4 = (-1, 0)$ ,  $S_5 = (0, 1)$ ,  $S_6 = (-1, 4)$

$$x \mapsto \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$(13) \quad a \xrightarrow{2} b \xrightarrow{2} c \rightarrow d \rightarrow a$$

$\lambda_1 = (2, 2)$ ,  $\lambda_2 = (-1, 0)$ ,  $S_1 = (1, 1)$ ,  $S_2 = (2, 2)$ ,  $S_3 = (3, 3)$ ,  $S_4 = (-1, 0)$ ,  $S_5 = (0, 1)$ ,  $S_6 = (3, 4)$

$$x \mapsto \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(14) \quad a \xrightarrow{2} b \rightarrow a, \quad c \xrightarrow{2} d \rightarrow c$$

$\lambda_1 = (2, 0)$ ,  $\lambda_2 = (0, 1)$ ,  $S_1 = (1, 0)$ ,  $S_2 = (2, 0)$ ,  $S_3 = (3, 0)$ ,  $S_4 = (1, 1)$ ,  $S_5 = (2, 1)$ ,  $S_6 = (3, 1)$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(15) \quad a \xrightarrow{2} b \rightarrow c \xrightarrow{2} d \rightarrow a$$

$\lambda_1 = (2, 2)$ ,  $\lambda_2 = (0, 1)$ ,  $S_1 = (1, 1)$ ,  $S_2 = (2, 2)$ ,  $S_3 = (3, 3)$ ,  $S_4 = (1, 2)$ ,  $S_5 = (2, 3)$ ,  $S_6 = (3, 4)$

$$x \mapsto \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(16) \quad a \xrightarrow{2} b \rightarrow c \rightarrow a, \quad d \xrightarrow{2} d$$

The airplane:  $\lambda_1 = (0, -2)$ ,  $\lambda_2 = (1, 0)$ ,  $S_1 = (0, -1)$ ,  $S_2 = (0, -2)$ ,  $S_3 = (0, -3)$ ,  $S_4 = (1, 0)$ ,  $S_5 = (1, -1)$ ,  $S_6 = (1, -4)$

$$x \mapsto \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The corabbit:  $\lambda_1 = (0, 1)$ ,  $\lambda_2 = (-2, 1)$ ,  $S_1 = (0, 0)$ ,  $S_2 = (0, 1)$ ,  
 $S_3 = (0, 2)$ ,  $S_4 = (-1, 1)$ ,  $S_5 = (-1, 2)$ ,  $S_6 = (-2, 3)$

$$x \mapsto \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} x + \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

The rabbit:  $\lambda_1 = (0, -1)$ ,  $\lambda_2 = (2, 1)$ ,  $S_1 = (1, 0)$ ,  $S_2 = (1, -1)$ ,  
 $S_3 = (0, -2)$ ,  $S_4 = (2, 1)$ ,  $S_5 = (2, 0)$ ,  $S_6 = (2, -1)$

$$x \mapsto \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

#### REFERENCES

- [1] J. W. Cannon, W. J. Floyd, and W. R. Parry, *Lattès maps and finite subdivision rules*, Conform. Geom. Dyn. **14** (2010), 113-140 (electronic).
- [2] J. W. Cannon, W. J. Floyd, W. R. Parry and K. M. Pilgrim, *Nearly Euclidean Thurston maps*, Conform. Geom. Dyn. **16** (2012), 209-255 (electronic).
- [3] E. A. Saenz Maldonado, *On Nearly Euclidean Thurston Maps*, Ph.D. thesis, Virginia Tech, 2012.