
NET MAPS OF DEGREE 2

Every Thurston map of degree 2 with exactly four postcritical points is
a NET map. There are 16 possible dynamic portraits of such maps. The
numbering of the portraits is the same as in the enumeration of portraits
elsewhere on this web site, but the labellings of the postcritical points by a,
b, c, and d is not consistent with the labellings used there.

(1) α
2→ a → b → c → c, β

2→ d → b

(2) α
2→ a → b → c → b, β

2→ d → c

(3) α
2→ a → b → b, β

2→ c → d → d

(4) α
2→ a → b

2→ c → d → b

(5) α
2→ a → b → b, c

2→ d → c

(6) α
2→ a → b

2→ c → d → d

(7) α
2→ a → b → c

2→ d → c

(8) α
2→ a → b → c → c, d

2→ d

(9) α
2→ a

2→ b → c → d → d

(10) α
2→ a → b → c → b, d

2→ d

(11) α
2→ a

2→ b → c → d → c

(12) α
2→ a → b → c

2→ d → b

(13) a
2→ b

2→ c → d → a

(14) a
2→ b → a, c

2→ d → c

(15) a
2→ b → c

2→ d → a

(16) a
2→ b → c → a, d

2→ d

The first three dynamic portraits are portraits of Euclidean Thurston
maps. Portraits 8), 10), and 16) are portraits of topological polynomials.
In Section 1 we give (in terms of normal forms) the possible rational maps
that realize these portraits. In Section 2 for each dynamic portrait we give
a subdivision map (for a finite subdivision rule) that realizes the portrait.
In Section 3 for each of these subdivision maps we give a wreath recursion
for the associated iterated monodromy group.

1. Rational maps

Since the degree is 2, it is straightforward to compute the rational maps
realizing a given dynamic portrait. For convenience, we normalize so that
the first critical value is 0, the second critical value is ∞, and one of the
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2 NET MAPS OF DEGREE 2

other postcritical points (the image of the first critical value if it isn’t already
normalized) is 1.

Five of the dynamic portraits, 8), 9), 12), 13), and 16) are only realized
by unobstruced maps. This was already known by [?] for portrait 16, and
for all five it is straightforward to show this by core arc arguments. Here
is the idea. We need to show that a Thurston map with this dynamic
portrait cannot have a Thurston obstruction. Suppose γ is a simple closed
curve that is nontrivial and nonperipheral. The complement of γ in the
2-sphere is a pair of open disks, and each of these disks contains exactly
two postcritical points. In each open disk there is an embedded arc that
joins the two postcritical points in that disk. Either of these arcs is a core

arc. The preimage of γ is the boundary of a regular neighborhood of the
preimage of either core arc. For each of the five portraits, one can show that
the preimage of γ either maps by degree 2 (and so has multiplier 1/2) or
isn’t in the homotopy class of γ. The arguments doen’t depend on detailed
knowledge of γ, but only on which pairs of postcritical points are in the
complementary open disks. Since you can work with either core arc, for
each portrait there are only three cases that one has to consider. We will
give more detaill of the argument in the case of dynamic portrait 8).

(1) α
2→ a → b → c → c, β

2→ d → b

If we set a = 0, b = 1, and d = ∞, then f(z) = (z−α)2

(z−β)2
, where

either α = ±i and β = ∓i or α = −1±
√
2 and β = −1∓

√
2.

(2) α
2→ a → b → c → b, β

2→ d → c

If we set a = 0, b = 1, and ∞, then f(z) = β2

α2

(z−α)2

(z−β)2
, where

α = 1
2(−1±

√
7i) and β = 1

2(5∓
√
7i).

(3) α
2→ a → b → b, β

2→ c → d → d

If we set a = 0, b = 1, and c = ∞, then f(z) = β2

α2

(z−α)2

(z−β)2
, where

α = 1
4(−1±

√
7i) and β = 1

16(5∓
√
7i).

(4) α
2→ a → b

2→ c → d → b

If we set a = 0, b = 1, and c = ∞, we get f(z) = 1
α2

(z−α)2

(z−1)2
, where

α = −1
2 ± 1

2 i.

(5) α
2→ a → b → b, c

2→ d → c

If we set a = 0, b = 1, and d = ∞, then f(z) = 1
4
(z+1/2)2

(z−1/4)2
.

(6) α
2→ a → b

2→ c → d → d

If we set a = 0, b = 1, and c = ∞, we get f(z) = 1
α2

(z−α)2

(z−1)2
, where

α = −1± i.

(7) α
2→ a → b → c

2→ d → c

If we set a = 0, b = 1, and d = ∞, we get f(z) = 4(z+2)2

(z−4)2
.

(8) α
2→ a → b → c → c, d

2→ d
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If we set α = 0 and d = ∞, then we get the quadratic polynomials
f(z) = z2+c, where c ≈ −1.54369 or c ≈ −0.228155±1.11514i. One
can see easily from a core arc argument that every Thurston map
with thie portrait is unobstructed. Suppose γ is a nontrivial curve
in the complement of the postcritical set that is nonperipheral. We
consider a core arc cγ that is disjoint from γ. It suffices to consider
a core arc joining c and d, a core arc joining b and d, and a core arc
joining a and d.

Since d maps to itself by degree 2 and b and c map to c by degree
1, the preimage of a core arc cγ joining c and d will be the union of
an arc joining b and d and an arc joining c and d. The boundary of a
regular neighborhood of the preimage of cγ will be peripheral so there
can’t be a Thurston obstruction with a and b in one complementary
component and c and d in the other complementary component.

The preimages of b are a and a point pb which maps to b by degree
1. The preimage of a core arc cγ joining b and d will be the union of
an arc joining a and d and an arc joining pb and d. The boundary
of a regaular neighborhood of the preimage of cγ has b and d in one
component of the complement, so it can’t be in the same homotopy
class as γ.

Finally suppose there is a core arc cγ joining a and d. Then its
preimage is a union of two arcs which join α and d. The boundary
of a regular neighborhood of the preimage of cγ is a pair of curves.
If γ is a Thurston obstruction, then one complementary component
of the preimage of cγ mush contain a and the other complementary
component must contain b and c. But the core arc cγ is disjoint from
a core arc joining b and c. The two preimages of c are b and c, and
a is a preimage of b, so the preimage of this core arc contains an arc
joining a and b or an arc joining a and c. This is impossible, since
this preimage is disjoint from the preimage of cγ and a is not in the
same complementary component of this preimage as b or c.

Hence no Thurston map with this dynamic portrait can have a
Thurston obstruction.

(9) α
2→ a

2→ b → c → d → d
If we set a = 0, b = ∞, and c = 1, we get f(z) = (z−α)2/z2, where

α ≈ 0.456311 or α ≈ 1.77184 ± 1.11514i. This family is completely
unobstructed.

(10) α
2→ a → b → c → b, d

2→ d
If we set α = 0 and d = ∞, then we get the quadratic ploynomials

f(z) = z2 + c, where c = ±i.

(11) α
2→ a

2→ b → c → d → c

If we set a = 0, b = ∞, and c = 1, we get f(z) = (z−1/2)2

z2
.

(12) α
2→ a → b → c

2→ d → b
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If we set a = 0, b = 1, and d = ∞, we get f(z) = (z−a)2

(z+a)2
, where

a ≈ −3.38298, 0.191488 ± 0.508852i. This family is completely un-
obstructed.

(13) a
2→ b

2→ c → d → a

If we set b = 0, c = ∞, and d = 1, then f(z) =
(z− 1

2
(3±

√
5))2

z2
. This

family is completely unobstructed.

(14) a
2→ b → a, c

2→ d → c
It is easy to see algebraically that there is no rational map with

this dynamic portrait.

(15) a
2→ b → c

2→ d → a

If we set b = 0, c = 1, and d = ∞, we get f(z) = a ∗ (z−a)2

(z−1)2
, where

a = 1
2(−1±

√
3i). Because of the symmetry in the dynamic portrait,

these two rational maps are conjugate.

(16) a
2→ b → c → a, d

2→ d
If we set a = 0 and d = ∞, then we get the quadratic ployno-

mials f(z) = z2 + c, where c ≈ −1.75488 (the airplane) or c ≈
−0.122561 ± 0.744862i (the rabbit and the twisted rabbit). From
Bartholdi-Nekrashevych [?] or a core-arc argument, one can show
that this family is completely unobstructed.

2. Subdivision maps

In this section we give figures for subdivision maps realizing these dynamic
portraits. For a figure of a subdivision map σR, the right-hand side shows
the 1-skeleton of the subdivision complex SR (viewing the 2-sphere as the
plane comopactified by a point at infinity) and the left-hand side shows the
1-skeleton of its subdivision R(SR). Here a label in black is the label of the
point and a label in red is the label of the image point under the subdivision
map.

(1) α
2→ a → b → c → c, β

2→ d → b
Figure 1 shows a subdivision map f1 realizing this portrait.

d c b ad c b a

α

β
b c c b

a

d f1

Figure 1. The subdivision map f1.

(2) α
2→ a → b → c → b, β

2→ d → c
Figure 2 shows a subdivision map f2 realizing this portrait.
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d b c ad b c aα β

c c b ba d f2

Figure 2. The subdivision map f2.

(3) α
2→ a → b → b, β

2→ c → d → d
Figure 3 shows a subdivision map f3a realizing this portrait. As

was shown in [1], a rational map with this dynamic portrait can not
be a subdivsion map for a finite subdivision rule whose subdivision
complex has 1-skeleton either a tree or a circle. Figure 4 shows an
expanding subdivision map f3b for a finite subdivision rule realizing
this dynamic portrait.

c a b dc a b dαβ
d b b dac f3a

Figure 3. The subdivision map f3a.

c

a

b

d

c

a

b

d

α

β

d

b

b

d

a

c

f3b

Figure 4. The subdivision map f3b.

(4) α
2→ a → b

2→ c → d → b

(5) α
2→ a → b → b, c

2→ d → c

(6) α
2→ a → b

2→ c → d → d

(7) α
2→ a → b → c

2→ d → c

(8) α
2→ a → b → c → c, d

2→ d

(9) α
2→ a

2→ b → c → d → d

(10) α
2→ a → b → c → b, d

2→ d
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d

c

b

ad

c

b

a
α

c

d
d

b
a

b

f4

Figure 5. The subdivision map f4.

a d c ba d c b
α b c d ba

c f5a

Figure 6. The subdivision map f5a.

d b c ad b c a

α

c b d b

a c

f5b

Figure 7. The subdivision map f5b.

d c

b

ad
c

b

a

α

cd

c

d

a

b f6

Figure 8. The subdivision map f6.

(11) α
2→ a

2→ b → c → d → c

(12) α
2→ a → b → c

2→ d → b
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d c b ad c b a

α

c d c b

ab

f7

Figure 9. The subdivision map f7.

a

b

c

d

a

b

c

d

α

b

c
c

d

a
b f8

Figure 10. The subdivision map f8.

b c d ab c d aα

c d d ba c f9

Figure 11. The subdivision map f9.

a

b

c

d

a

b

c

d

α

b

c
b

d

a

c

f10

Figure 12. The subdivision map f10.

(13) a
2→ b

2→ c → d → a

(14) a
2→ b → a, c

2→ d → c

(15) a
2→ b → c

2→ d → a
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b d c ab d c aα

c c d ba

d

f11

Figure 13. The subdivision map f11.

d c b ad c b a

α

b d c b

a

c f12

Figure 14. The subdivision map f12.

a

b c

da

b c

db

a

d

c d

a

f13

Figure 15. The subdivision map f13.

a

c b

da

c
b

db

c

a

d
a

c

f14

Figure 16. The subdivision map f14.

(16) a
2→ b → c → a, d

2→ d
Figure 18 shows the subdivision map f16a (which is equivalent to

the airplane) which realizes this ramificaition portrait.
Figure 19 shows the subdivision map f16r, which is equivalent to

the rabbit. The 1-skeleton of the subdivision complex SR shown
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a

b c

da

b c

d
b

c d

a

a

c f15

Figure 17. The subdivision map f15.

a

b d

ca

b d

c
b

c d

a

a c
f16a

Figure 18. The subdivision map f16a.

in Figure 19 comes from a Hubbard tree for the rabbit polynomial
together with the rays from a, b, and c to d (which corresponds to
∞).

a

b

c

d

a

b

c

d

b

c

a

d

a

c f16r

Figure 19. The subdivision map f16r.

3. Wreath recursions

(1) α
2→ a → b → c → c, β

2→ d → b
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The wreath recursion for f1 is as follows:

a = 〈1, 1〉(12), b = 〈a, d〉, c = 〈b, dcd−1〉, d = 〈ba, dc〉(12), dcba = 1

Note that in the iterated monodromy group a2 and b2 are trivial.
Since b2 = 〈a2, d2〉, b2 is also trivial.

(2) α
2→ a → b → c → b, β

2→ d → c
The wreath recursion for f2 is as follows:

a = 〈d−1, d〉(12), b = 〈a, dbcb−1d−1〉, c = 〈d, dbd−1〉, d = 〈a, a−1〉(12), dbca = 1

(3) α
2→ a → b → b, β

2→ c → d → d
The wreath recursion for f3a is as follows:

a = 〈a−1c−1, ca〉(12), b = 〈b, cac−1〉, c = 〈1, 1〉(12), d = 〈d, c〉, cabd = 1

(4) α
2→ a → b

2→ c → d → b
The wreath recursion for f14 is as follows:

a = 〈1, 1〉(12), b = 〈a, d〉, c = 〈a−1, c−1d−1〉(12), d = 〈1, c〉, abdc = 1

(5) α
2→ a → b → b, c

2→ d → c
The wreath recursion for f5a is as follows:

a = 〈1, 1〉(12), b = 〈a, b〉, c = 〈ada−1, 1〉, d = 〈b−1, d−1a−1〉(12), adcb = 1

The wreath recursion for f5b is as follows:

a = 〈1, 1〉(12), b = 〈a, dbd−1〉, c = 〈1, d〉, d = 〈b−1d−1, a−1〉(12), dbca = 1

(6) α
2→ a → b

2→ c → d → d

(7) α
2→ a → b → c

2→ d → c
The wreath recursion for f7 is as follows:

a = 〈1, 1〉(12), b = 〈a, 1〉, c = 〈b, d〉, d = 〈d−1, dc〉(12), dcba = 1

(8) α
2→ a → b → c → c, d

2→ d
The wreath recursion for f8 is as follows:

a = 〈1, 1〉(12), b = 〈a, 1〉, c = 〈b, c〉, d = 〈a−1c−1, b−1〉(12), abdc = 1

(9) α
2→ a

2→ b → c → d → d
The wreath recursion for f9 is as follows:

a = 〈da, bc〉(12), b = 〈a, 1〉(12), c = 〈b, 1〉, d = 〈c, bcdc−1b−1〉, bcda = 1

(10) α
2→ a → b → c → b, d

2→ d
The wreath recursion f10 is as follows:

a = 〈1, 1〉(12), b = 〈a, c〉, c = 〈b, 1〉, d = 〈a−1, c−1b−1〉(12), abdc = 1

(11) α
2→ a

2→ b → c → d → c
The wreath recursion for f11 is as follows:

a = 〈b−1, b〉(12), b = 〈a, 1〉(12), c = 〈b, bdb−1〉, d = 〈1, a−1ca〉, bdca = 1
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(12) α
2→ a → b → c

2→ d → b
The wreath recursion for f12 is as follows:

a = 〈1, 1〉(12), b = 〈a, d〉, c = 〈b, 1〉, d = 〈d−1, dc〉(12), dcba = 1

(13) a
2→ b

2→ c → d → a
The wreath recursion for f13 is as follows:

a = 〈d, 1〉, b = 〈a, 1〉(12), c = 〈1, b〉(12), d = 〈c, 1〉, abcd = 1

(14) a
2→ b → a, c

2→ d → c
The wreath recursion for f14 is as follows:

a = 〈b, 1〉, b = 〈a, 1〉(12), c = 〈d, 1〉, d = 〈1, c〉(12), acbd = 1

(15) a
2→ b → c

2→ d → a
The wreath recursion for f15 is as follows:

a = 〈d, 1〉, b = 〈a, 1〉(12), c = 〈1, b〉, d = 〈1, c〉(12), abcd = 1

(16) a
2→ b → c → a, d

2→ d
The wreath recursion for f16a (the airplane) is:

a = 〈c, 1〉, b = 〈a, 1〉(12), c = 〈1, b〉, d = 〈b−1, bd〉(12), abdc = 1

The wreath recursion for f16r (the rabbit) is as follows:

a = 〈c, 1〉, b = 〈1, a〉(12), c = 〈b, 1〉, d = 〈cd, c−1〉(12), abcd = 1

4. NET data for HalfSpace

The program HalfSpace takes as input two points λ1 and λ2 in the plane,
and then six more points, S1, . . . S6, giving endpoints for the spin mirrors.
Here are possible inputs for the different possible dynamic portraits, as well
as the data in the format x 7→ Ax + B. Except for portraits 10) and 16),
the presentations are for the NET maps given in the the dynamic portraits
lists elsewehere on this site. These NET maps may not be equivalent to the
subdivsion maps given in Section 2. The presentations given for portraits
10) and 16) are for NET maps equivalent to the maps z 7→ z2+ i, the rabbit,
the corabbit, and the airplane.

(1) α
2→ a → b → c → c, β

2→ d → b
λ1 = (0, 2), λ2 = (−1, 0), S1 = (0, 0), S2 = (0, 2), S3 = (0, 4),

S4 = (−1, 0), S5 = (−1, 2), S6 = (−1, 4)

x 7→
[

0 −1
2 0

]

x+

[

0
0

]

(2) α
2→ a → b → c → b, β

2→ d → c
λ1 = (2, 2), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 2), S3 = (4, 4),

S4 = (0, 1), S5 = (2, 3), S6 = (4, 5)

x 7→
[

2 0
2 1

]

x+

[

0
1

]
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(3) α
2→ a → b → b, β

2→ c → d → d
λ1 = (2, 0), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 0), S3 = (4, 0),

S4 = (0, 1), S5 = (2, 1), S6 = (4, 1)

x 7→
[

2 0
0 1

]

x+

[

0
0

]

(4) α
2→ a → b

2→ c → d → b
λ1 = (2, 0), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 0), S3 = (4, 0),

S4 = (1, 0), S5 = (2, 1), S6 = (4, 1)

x 7→
[

2 0
0 1

]

x+

[

0
1

]

(5) α
2→ a → b → b, c

2→ d → c
λ1 = (2, 2), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 2), S3 = (4, 4),

S4 = (1, 1), S5 = (2, 3), S6 = (4, 5)

x 7→
[

2 0
2 1

]

x+

[

0
0

]

(6) α
2→ a → b

2→ c → d → d
λ1 = (2, 0), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 0), S3 = (4, 0),

S4 = (1, 0), S5 = (2, 1), S6 = (4, 1)

x 7→
[

2 0
0 1

]

x+

[

0
0

]

(7) α
2→ a → b → c

2→ d → c
λ1 = (0, 2), λ2 = (−1,−1), S1 = (0, 0), S2 = (0, 2), S3 = (0, 4),

S4 = (0, 1), S5 = (−1, 1), S6 = (−1, 3)

x 7→
[

0 −1
2 −1

]

x+

[

−1
−1

]

(8) α
2→ a → b → c → c, d

2→ d
λ1 = (2, 2), λ2 = (−1, 0), S1 = (0, 0), S2 = (2, 2), S3 = (4, 4),

S4 = (−1, 0), S5 = (1, 1), S6 = (3, 4)

x 7→
[

2 −1
2 0

]

x+

[

0
0

]

(9) α
2→ a

2→ b → c → d → d
λ1 = (0, 2), λ2 = (−1, 0), S1 = (0, 0), S2 = (0, 2), S3 = (0, 4),

S4 = (−1, 0), S5 = (0, 1), S6 = (−1, 4)

x 7→
[

0 −1
2 0

]

x+

[

0
0

]
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(10) α
2→ a → b → c → b, d

2→ d
The map f(z) = z2 + i: λ1 = (2, 0), λ2 = (1, 1), S1 = (0, 0),

S2 = (2, 0), S3 = (4, 0), S4 = (1, 1), S5 = (1, 0), S6 = (5, 1)

x 7→
[

2 1
0 1

]

x+

[

1
1

]

(11) α
2→ a

2→ b → c → d → c
λ1 = (2, 2), λ2 = (0, 1), S1 = (0, 0), S2 = (2, 2), S3 = (4, 4),

S4 = (0, 1), S5 = (1, 1), S6 = (4, 5)

x 7→
[

2 0
2 1

]

x+

[

0
1

]

(12) α
2→ a → b → c

2→ d → b
λ1 = (0, 2), λ2 = (−1, 0), S1 = (0, 0), S2 = (0, 2), S3 = (0, 4),

S4 = (−1, 0), S5 = (0, 1), S6 = (−1, 4)

x 7→
[

0 −1
2 0

]

x+

[

−1
0

]

(13) a
2→ b

2→ c → d → a
λ1 = (2, 2), λ2 = (−1, 0), S1 = (1, 1), S2 = (2, 2), S3 = (3, 3),

S4 = (−1, 0), S5 = (0, 1), S6 = (3, 4)

x 7→
[

2 −1
2 0

]

x+

[

0
0

]

(14) a
2→ b → a, c

2→ d → c
λ1 = (2, 0), λ2 = (0, 1), S1 = (1, 0), S2 = (2, 0), S3 = (3, 0),

S4 = (1, 1), S5 = (2, 1), S6 = (3, 1)

x 7→
[

2 0
0 1

]

x+

[

0
0

]

(15) a
2→ b → c

2→ d → a
λ1 = (2, 2), λ2 = (0, 1), S1 = (1, 1), S2 = (2, 2), S3 = (3, 3),

S4 = (1, 2), S5 = (2, 3), S6 = (3, 4)

x 7→
[

2 0
2 1

]

x+

[

0
0

]

(16) a
2→ b → c → a, d

2→ d
The airplane: λ1 = (0,−2), λ2 = (1, 0), S1 = (0,−1), S2 =

(0,−2), S3 = (0,−3), S4 = (1, 0), S5 = (1,−1), S6 = (1,−4)

x 7→
[

0 1
−2 0

]

x+

[

0
0

]
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The corabbit: λ1 = (0, 1), λ2 = (−2, 1), S1 = (0, 0), S2 = (0, 1),
S3 = (0, 2), S4 = (−1, 1), S5 = (−1, 2), S6 = (−2, 3)

x 7→
[

0 −2
1 1

]

x+

[

−2
1

]

The rabbit: λ1 = (0,−1), λ2 = (2, 1), S1 = (1, 0), S2 = (1,−1),
S3 = (0,−2), S4 = (2, 1), S5 = (2, 0), S6 = (2,−1)

x 7→
[

0 2
−1 1

]

x+

[

0
−1

]
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