NET MAPS OF DEGREE 2

Every Thurston map of degree 2 with exactly four postcritical points is
a NET map. There are 16 possible dynamic portraits of such maps. The
numbering of the portraits is the same as in the enumeration of portraits
elsewhere on this web site, but the labellings of the postcritical points by a,
b, ¢, and d is not consistent with the labellings used there.

(1)oz3>a—>b—>c—>c, Bid—)b
2 aia—>b—>c—>b, 53>d—>c
a3>a—>b—>b, Bgc—>d—>d
2 2
a=>a—b>c—>d—b
2 2
a=>a—>b—b, c=>d—c

16)a3>b—>c—>a, d>d

The first three dynamic portraits are portraits of Euclidean Thurston
maps. Portraits 8), 10), and 16) are portraits of topological polynomials.
In Section 1 we give (in terms of normal forms) the possible rational maps
that realize these portraits. In Section 2 for each dynamic portrait we give
a subdivision map (for a finite subdivision rule) that realizes the portrait.
In Section 3 for each of these subdivision maps we give a wreath recursion
for the associated iterated monodromy group.

1. RATIONAL MAPS

Since the degree is 2, it is straightforward to compute the rational maps
realizing a given dynamic portrait. For convenience, we normalize so that
the first critical value is 0, the second critical value is oo, and one of the
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other postcritical points (the image of the first critical value if it isn’t already
normalized) is 1.

Five of the dynamic portraits, 8), 9), 12), 13), and 16) are only realized
by unobstruced maps. This was already known by [?] for portrait 16, and
for all five it is straightforward to show this by core arc arguments. Here
is the idea. We need to show that a Thurston map with this dynamic
portrait cannot have a Thurston obstruction. Suppose v is a simple closed
curve that is nontrivial and nonperipheral. The complement of ~ in the
2-sphere is a pair of open disks, and each of these disks contains exactly
two postcritical points. In each open disk there is an embedded arc that
joins the two postcritical points in that disk. Either of these arcs is a core
arc. The preimage of v is the boundary of a regular neighborhood of the
preimage of either core arc. For each of the five portraits, one can show that
the preimage of 7 either maps by degree 2 (and so has multiplier 1/2) or
isn’t in the homotopy class of 7. The arguments doen’t depend on detailed
knowledge of 7, but only on which pairs of postcritical points are in the
complementary open disks. Since you can work with either core arc, for
each portrait there are only three cases that one has to consider. We will
give more detaill of the argument in the case of dynamic portrait 8).

(1)@3a%b—>c—>c, BEd—b
If we set @ =0, b =1, and d = oo, then f(z) = E:g;i’ where
eithera =+iand f=TFiora=—-1++v2and f=—1F V2.
(2)a3>a%b—>c—>b, 63>d—>c

M

If we set a = 0, b = 1, and oo, then f(z) = g—z(z:g)g,
o= 3(—1+£/Ti) and B = 1(5F VTi).
(3)a3>a—>b—>b, Bic—>d—>d
If we set a =0, b= 1, and ¢ = oo, then f(z) = g—i%, where
a=5(—1+7i) and 8 = {5(5F VTi).
(4) ada—sbdcad—b

where

—~

2

If weset a=0,b=1, and ¢ = 0o, we get f(z)zﬁ(é:cf)) , where
1, 1;
O‘:_iiil'
(5)a3>a—>b—>b, cSd—ec
If we set a =0,b=1, and d = oo, then f(z) = %Ezﬂﬁgz
(6) adasbdcsdod
2
If we set a =0, b= 1, and ¢ = 0o, we get f(z)zé((’z:%)%where
a=—1=+x1.
(7) ada—sbocddoe
If weset a =0,b=1, and d = oo, we get f(z) = 4((sz42))22.

(8)a3>a—>b—>c—>c, d>d
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If we set @« = 0 and d = oo, then we get the quadratic polynomials
f(2) = 2%24¢, where ¢ &~ —1.54369 or ¢ ~ —0.228155+1.11514i. One
can see easily from a core arc argument that every Thurston map
with thie portrait is unobstructed. Suppose v is a nontrivial curve
in the complement of the postcritical set that is nonperipheral. We
consider a core arc ¢, that is disjoint from ~y. It suffices to consider
a core arc joining ¢ and d, a core arc joining b and d, and a core arc
joining a and d.

Since d maps to itself by degree 2 and b and ¢ map to ¢ by degree
1, the preimage of a core arc ¢, joining ¢ and d will be the union of
an arc joining b and d and an arc joining ¢ and d. The boundary of a
regular neighborhood of the preimage of ¢, will be peripheral so there
can’t be a Thurston obstruction with a and b in one complementary
component and ¢ and d in the other complementary component.

The preimages of b are a and a point p, which maps to b by degree
1. The preimage of a core arc ¢y joining b and d will be the union of
an arc joining a and d and an arc joining p, and d. The boundary
of a regaular neighborhood of the preimage of c, has b and d in one
component of the complement, so it can’t be in the same homotopy
class as 7.

Finally suppose there is a core arc ¢, joining a and d. Then its
preimage is a union of two arcs which join a and d. The boundary
of a regular neighborhood of the preimage of ¢, is a pair of curves.
If 4 is a Thurston obstruction, then one complementary component
of the preimage of ¢, mush contain a and the other complementary
component must contain b and c¢. But the core arc ¢, is disjoint from
a core arc joining b and ¢. The two preimages of ¢ are b and ¢, and
a is a preimage of b, so the preimage of this core arc contains an arc
joining a and b or an arc joining a and c. This is impossible, since
this preimage is disjoint from the preimage of ¢, and a is not in the
same complementary component of this preimage as b or c.

Hence no Thurston map with this dynamic portrait can have a
Thurston obstruction.

9) adadbscsdod

Ifweseta =0,b=o00,and c = 1, we get f(z) = (z—a)?/22, where
a & 0.456311 or a =~ 1.77184 4 1.11514¢. This family is completely
unobstructed.

(10) aBa—boc—ob d>d

If we set « = 0 and d = oo, then we get the quadratic ploynomials

f(2) = 2% + ¢, where ¢ = +i.
(11) adadbocsdoe

(2-1/2)
22

If we set a =0, b=o00, and c =1, we get f(z) =
(12) ada—sbocdd—ob
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If we set a =0, b =1, and d = oo, we get f(z) = E;_rzgj’ where
a ~ —3.38298,0.191488 4 0.508852¢. This family is completely un-
obstructed.

(13) a3bScsd—>a

If weset b=0, c=o00,and d =1, then f(z) =
family is completely unobstructed.

(14)a3>b—>a, c3d—e

It is easy to see algebraically that there is no rational map with
this dynamic portrait.

(15) a3bosc>dd—oa

(z—3(3+V5))?

22

. This

Ifweset b=0,c=1, and d = oo, we get f(z) = ax* Ez:‘gi, where

a= %(—1 + \/gz) Because of the symmetry in the dynamic portrait,
these two rational maps are conjugate.
(16)a3>b—>c—>a, d>d

If we set @ = 0 and d = oo, then we get the quadratic ployno-
mials f(z) = 22 + ¢, where ¢ ~ —1.75488 (the airplane) or ¢ ~
—0.122561 + 0.744862¢ (the rabbit and the twisted rabbit). From
Bartholdi-Nekrashevych [?] or a core-arc argument, one can show
that this family is completely unobstructed.

2. SUBDIVISION MAPS

In this section we give figures for subdivision maps realizing these dynamic

portraits. For a figure of a subdivision map o, the right-hand side shows
the 1-skeleton of the subdivision complex Sk (viewing the 2-sphere as the
plane comopactified by a point at infinity) and the left-hand side shows the
1-skeleton of its subdivision R(Sg). Here a label in black is the label of the
point and a label in red is the label of the image point under the subdivision
map.

(1)a£>a—>b—>c—>c, Bid—ﬂ)
Figure 1 shows a subdivision map f; realizing this portrait.
a
o
b c d ¢ b f1
d B d c b a
FIGURE 1. The subdivision map fi.
(2)a3>a—>b—>c—>b, Bid—>c

Figure 2 shows a subdivision map fo realizing this portrait.
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b fo
a

FIGURE 2. The subdivision map fs.

B)ada—sbob BIcodod
Figure 3 shows a subdivision map f3, realizing this portrait. As
was shown in [1], a rational map with this dynamic portrait can not
be a subdivsion map for a finite subdivision rule whose subdivision
complex has 1-skeleton either a tree or a circle. Figure 4 shows an
expanding subdivision map fs;, for a finite subdivision rule realizing
this dynamic portrait.

d b b d f3a

FiGURE 3. The subdivision map f3,.

d f3b

S|
S|

F1GURE 4. The subdivision map f3p.

(4) ada—bdcsd—b
(5) a >a—b—b, cSd—ec
(6) adasbdesd—od
(Ma>a—=b—oc>d—c
8) a=>a—=b—c—ec d=d
9 a>>a>b—sc—d—d
10) aBa—b—oc—ob d>d
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a d
d fa
C
b
FIGURE 5. The subdivision map fj.
a b C ] ¢ b f5a
' a d C b - a d c b

FiGURE 7. The subdivision map f5p.

fo

F1GURE 8. The subdivision map fg.

(11) adadboscsdoe
(12) ada—sbocdd—b
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F1GURE 10. The subdivision map fs.

FIGURE 12. The subdivision map f;0.

(13) a3bScad—a

(14)a3>b—>a, cSd—ec

(15) a3bosc>ddoa

[\



NET MAPS OF DEGREE 2

Ju

FiGURE 16. The subdivision map fi4.

(16)a3>b—>c—>a, d>d
Figure 18 shows the subdivision map fig, (which is equivalent to
the airplane) which realizes this ramificaition portrait.
Figure 19 shows the subdivision map fig,, which is equivalent to
the rabbit. The 1-skeleton of the subdivision complex Sz shown
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flﬁa

FI1GURE 18. The subdivision map figq-

in Figure 19 comes from a Hubbard tree for the rabbit polynomial
together with the rays from a, b, and ¢ to d (which corresponds to

flﬁr

A

FIGURE 19. The subdivision map fig;.

3. WREATH RECURSIONS

(1)a3>a—>b—>c—>c, Bid—ﬂ)
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The wreath recursion for f; is as follows:
a={(1,1)(12), b= (a,d), c=(bded™'), d= (ba,dc)(12), dcba =1
Note that in the iterated monodromy group a? and b® are trivial.
Since b? = (a?,d?), b? is also trivial.

(2)@3@%()%0%@ Bid%c
The wreath recursion for f, is as follows:

a=(d',d)(12), b= (a,dbcb™rd7t), c=(d,dbd™'), d=(a,a"')(12), dbca=1

B)ada—sbob BIcodod
The wreath recursion for f3, is as follows:

a={(atetea)(12), b= (b,cac?), c=(1,1)(12), d={(d,c), cabd=1
(4) ada—bdcsd—b
The wreath recursion for fi4 is as follows:
a=(1,1)(12), b={a,d), c={(a" a7 1)(12), d=(1,¢), abdc=1
(5)043>a—>b—>b, cSd—c
The wreath recursion for f5, is as follows:
a=(1,1)(12), b= (a,b), c={ada',1), d= ("' da"1)(12), adcb=1
The wreath recursion for f5, is as follows:
a=(1,1)(12), b= {a,dbd™"), c=(1,d), d=b'da")(12), dbca=1
(6) adasbdcesd—od

(7) ada—sbocddoe
The wreath recursion for f7 is as follows:

a=(1,1)(12), b={a,1), c=(b,d), d={(d' dec)(12), dcba=1
(8)a3>a—>b—>c—>c, d>d
The wreath recursion for fg is as follows:
a=(1,1)(12), b={(a,1), c=(bc), d=(a"'e,b71)(12), abdc=1
9) adadbscsdod
The wreath recursion for fg is as follows:
a=(da,bc)(12), b= (a,1)(12), c=(b,1), d= (c,bedc b)), beda =1
(10) aBa—boc—ob d>d
The wreath recursion fiq is as follows:
a=(1,1)(12), b= {a,c), c=(b1), d=(a"t,cv1)(12), abdc=1
(11) adadboscsdoe
The wreath recursion for fi; is as follows:

a={b"10)(12), b=(a,1)(12), c=(bbdb"Y), d=(1,a 'ca), bdca=1



NET MAPS OF DEGREE 2 11

(12) aBdasbscsd—b
The wreath recursion for fis is as follows:

a=(1,1)(12), b= {a,d), c=(b1), d={(d' dec)(12), dcba=1

(13) a3b3cod—oa
The wreath recursion for fi3 is as follows:

a={(d,1), b={(a,1)(12), c=(1,b)(12), d={c,1), abed=1

(14)a3>b—>a, cBd—c
The wreath recursion for fi4 is as follows:

a= (1), b={(a,1)(12), c=(d, 1), d=(1,¢)(12), acbd=1

(15) a3bosc>dd—oa
The wreath recursion for fi5 is as follows:

a={(d,1), b={a,1)(12), c=(1,b), d={(1,¢)(12), abed=1

(16)a3>b—>c—>a, d>d
The wreath recursion for fig, (the airplane) is:

a=1{(c1), b={a,1)(12), c=(1,b), d= (b ' bd)(12), abdc=1
The wreath recursion for fig, (the rabbit) is as follows:
a={c1), b={(1,a)12), c¢= (1), d=(cd,c1)(12), abed=1

4. NET DATA FOR HALFSPACE

The program HalfSpace takes as input two points A\; and As in the plane,
and then six more points, Si,...Sg, giving endpoints for the spin mirrors.
Here are possible inputs for the different possible dynamic portraits, as well
as the data in the format = — Az + B. Except for portraits 10) and 16),
the presentations are for the NET maps given in the the dynamic portraits
lists elsewehere on this site. These NET maps may not be equivalent to the
subdivsion maps given in Section 2. The presentations given for portraits
10) and 16) are for NET maps equivalent to the maps z ++ 2z +1, the rabbit,
the corabbit, and the airplane.

(1)(13@%()%0%0, ﬂ%dﬁb
)‘1 = (0a2)7 )‘2 = (7170)5 Sl = (070)5 SQ = (072)7 S3 = (074)7
S4 = (_150)7 55 = (_1,2), S6 = (—1,4)
X

0 -1 0
d Tt
(2)a3>a—>b—>c—>b, B3d—c

A= (2,2), A = (0,1), S1 = (0,0), Sy = (2,2), S5 = (4,4),
Sy =(0,1), S5 = (2,3), S = (4,5)

e i el
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(3)a3>a—>b—>b, Bgc—>d—>d
A= (27())1 Ay = (071)7 Sl = (an)a 52 = (270)7 S3 = (470)7
Sy =1(0,1), S5 = (2,1), S = (4,1)

S

(4) ada—sbdcodob
A1 = (2>O>1 Ao = (071)7 Sl = (O>O>a 52 = (270)7 S3 = (470)7
Sy =(1,0), S5 = (2,1), S¢ = (4,1)

SaTRiE

(5)a3>a—>b—>b, chd—ec
A1 = (272)1 Ao = (071)7 Sl = (070)1 S2 = (272)7 S3 = (474)7
S4 = (17 1)7 S5 = (273)7 SG = (475)

v s Sl

(6) ada—sbdcodod
A1 = (270)1 Ao = (071)7 Sl = (070)1 S2 = (270)7 S3 = (470)7
Sy =(1,0), S5 = (2,1), S¢ = (4,1)

TRt

(7) ada—sbocddoe
AL = (072)7 Ay = (_17_1)7 Sl = (an)a 52 = (072)7 53 = (074)7
Sy =1(0,1), S5 = (—1,1), S¢ = (—1,3)

L 0 -1 n —1
R I R
(8)a3>a—>b—>c—>c, d>d

/\1 = (2a2)a )‘2 = (_170)7 Sl = (O>O)a 52 = (272)7 53 = (474)>
Sy =(-1,0), S5 = (1,1), Sg = (3,4)

ol

9) adadbocod—od
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(10)a3>a—>b—>c—>b d>d
The map f(2) = 22 +i: A = (2,0), Ao = (1,1), S1 = (0,0),
S2 = (2,0), S3=(4,0), Sa = (1,1), S5 = (1,0), S = (5,1)

5
ool
(11) adadbocodoe

AL = (2,2), A2 = (0,1), S1 = (0,0), S2 = (2,2), S3 = (4,4),
Sy =1(0,1), S5 = (1,1), Se = (4,5)

e s e

(12)a3>a—>b—>ci>d—>b
A= (012)7 Ay = (_170)7 Sl = (
542(_1a0)7s5:(0a1)736: - 74

(13) a3bScad—a
AL = (2’2)7 Ao = (_170)7 Sl = (Ll)a S2 = (252)7 S3 = (373)7
Sy =(—1,0), S5 = (0,1), S = (3,4)

. 2 —1 " 0
T2 0] o
(14)a3>b—>a, c3d—e

AL = (2>O)a Ay = (Ovl)a S1 = (170)a So = (270)7 Sz = (370)>
Sy =(1,1), S5 = (2,1), S¢ = (3,1)

ol e

(15) adbscdd—a
/\1 = (272)’ )‘2 = (071)7 Sl = (171)a 52 = (272)7 S3 = (373)7
Sy =(1,2), S5 = (2,3), S = (3,4)

i e

(16)a3>b—>c—>a, d>d
The airplane: Ay = (0,—-2), Ay = (1,0), S; = (0,—1), Sy =
(O> _2)> S3 = (07 _3)a Sy = (1,0), 55 = (la _1)a SG = (1> _4)

o[ il
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The corabbit: A\; = (0,1), Ay = (—2,1), S1 = (0,0), So = (0,1),
53_(032)7 S4_(_ a1)755 ( 172)a 56:(_ 73)
0 -2 —2
€T — 11 ] T+ [ 1 ]
The rabbit: A = (0,—1), Ao = (2,1), S = (1,0), So = (1, 1),

2 =
Sz =(0,-2), Sy = (2, 1), S (2,0), Sg = (2,-1)
0o 2 0
o= [0 e [
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